Regulatory Approaches for Generic Drugs: BE of Topical Drug Products

Barbara M. Davit, Ph.D., J.D.
Director, Division of Bioequivalence II
Office of Generic Drugs, CDER, FDA

PQRI Workshop
Evaluation of New and Generic Topical Drug Products
March 11-13, 2013
Agenda

• Bioequivalence issues unique to topical drug products
• Pharmacokinetic (PK) approach
• Pharmacodynamic (PD) approach
• Clinical approach
• In vitro approach
• Waiver of BE requirement (biowaiver)
• Summary and conclusions
Why do bioequivalence (BE) studies of topical products present unique regulatory issues?
Why are BE studies necessary for proposed new generic products?

• The US Code and FDA’s regulations require that a generic drug product be bioequivalent to its corresponding reference listed drug (RLD) product for marketing approval.

• It is not necessary to demonstrate safety and efficacy for the new generic.
 – Relies on RLD safety and efficacy data.

• If certain criteria are met, FDA may grant a biowaiver.
Objective of BE studies in generic drug approval process

• In an acceptable BE study, the generic and reference product should not show a significant difference in the rate and extent of availability at the site of action

• FDA’s regulations list suitable BE approaches ranked by sensitivity, accuracy, reproducibility

• For each new generic topical drug product, FDA must consider
 – The optimal BE approach; or
 – Whether a biowaiver is appropriate
BE approaches, ordered by accuracy, sensitivity, reproducibility

• PK
• PD
• Clinical endpoint
• In vitro
• Any other approach deemed suitable by FDA
Considerations in selecting BE approach for a generic topical drug

Choice of BE study design depends on ability to compare drug delivered by generic & RLD at site of action.

- Site of action
- Mechanism of action
- Sensitivity of approach
- Feasibility of approach
- RLD formulation
Some definitions applied in comparing generic and RLD topical formulations

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitatively the same</td>
<td>Q1</td>
<td>Generic and RLD products contain the same active and inactive ingredients</td>
</tr>
<tr>
<td>Quantitatively the same</td>
<td>Q2</td>
<td>Generic and RLD products contain the same amounts of active and inactive ingredients</td>
</tr>
<tr>
<td>Physicochemical attributes of a topical dosage form</td>
<td>Q3</td>
<td>Generic and RLD products have the same physicochemical properties</td>
</tr>
</tbody>
</table>
Several case studies illustrate how FDA determines an appropriate BE approach for a generic topical product
Application of PK approach: lidocaine topical patch 5%
Application of PK approach:
lidocaine topical patch 5%

<table>
<thead>
<tr>
<th>Drug substance</th>
<th>Indication</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>• An amide-type local anesthetic agent</td>
<td>• Relief of pain associated with post-herpetic neuralgia</td>
<td>• Lidocaine acts on nerves in dermal tissue</td>
</tr>
</tbody>
</table>
Application of PK approach: lidocaine topical patch 5%

<table>
<thead>
<tr>
<th>Site of action</th>
<th>RLD formulation</th>
<th>Sensitivity, feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lidocaine penetrates beneath the stratum corneum to reach the site of action in dermal tissue</td>
<td>• An adhesive material containing 5% lidocaine, to be applied to the skin</td>
<td>• Lidocaine in plasma is proportional to its presence at site of action</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Measuring lidocaine in plasma is feasible</td>
</tr>
</tbody>
</table>
Application of PD approach: fluocinolone acetonide 0.01% topical body oil
Application of PD approach: fluocinolone acetonide topical oil

Drug substance
- Low-to-medium range potency corticosteroid

Indication
- Topical treatment of atopic dermatitis

Mechanism of action
- Has anti-inflammatory, antipruritic, & vasoconstrictive properties
Application of PD approach: fluocinolone acetonide topical oil

Site of action
- Absorbed percutaneously; not intended to be systemically absorbed

RLD formulation
- A solution of fluocinolone acetonide in a blend of oils

Sensitivity, feasibility
- The PD vasoconstrictr assay can accurately detect rate and extent of availability in skin
Fluocinolone acetonide topical oil: additional considerations for BE

Is the generic fluocinolone acetonide 0.01% topical oil formulated to be Q1/Q2 the same as the RLD?

Yes

FDA will consider granting a biowaiver

No

Applicant must show BE via the vasoconstrictor assay
Application of clinical endpoint approach: 5-flourouracil (5-FU) cream 5%
Application of clinical approach: 5-FU cream 5%

<table>
<thead>
<tr>
<th>Drug substance</th>
<th>Indication</th>
<th>Mechanism of action</th>
</tr>
</thead>
</table>
| - A fluoro-pyrimidinedione which is cytotoxic | - Topical treatment of actinic keratoses (AK)
- Treatment of superficial basal cell carcinomas (sBCC) | - Creates a thymine deficiency, provoking unbalanced growth in rapidly-growing cells, such as carcinomas |
Application of clinical approach:
5-FU cream 5%

Site of action
• Acts on AK and sBCC lesions in the epidermis and dermis

RLD formulation
• Cream contains 5-FU in a vanishing cream base comprised of several inactive ingredients

Sensitivity, feasibility
• AK treatment is considered more sensitive to formulation performance than sBCC treatment
• It is feasible to perform a clinical endpoint BE study in AK patients
Clinical endpoint BE studies of 5-FU: additional considerations

• Primary endpoint is proportion of subjects with treatment success at study week 6
• Success is defined as 100% clearance of all AK lesions within the treatment area
• A placebo control arm is recommended to
 – Demonstrate that the generic and RLD are active;
 – As a parameter to show that study is sufficiently sensitive to detect differences between products
Application of in vitro approach: acyclovir ointment 5%
An in vitro approach can be used for acyclovir ointment 5%

<table>
<thead>
<tr>
<th>Drug substance</th>
<th>Indication</th>
<th>Mechanism of action</th>
</tr>
</thead>
</table>
| • A synthetic nucleotide analogue active against herpes viruses | • Initial outbreaks of genital herpes
• Treat certain types of lesions caused by Herpes simplex virus | • Converted to acyclovir triphosphate intracellularly
• Acyclovir triphosphate stops replication of herpes viral DNA |
An in vitro approach can be used for acyclovir ointment 5%

<table>
<thead>
<tr>
<th>Site of action</th>
<th>RLD formulation</th>
<th>Sensitivity, feasibility</th>
</tr>
</thead>
</table>
| • Acyclovir delivered by the ointment functions in the upper layer of the skin | • Considerably less complex than a cream
• Consists of one active ingredient suspended in a polyethylene glycol base | • An in vitro BE approach more sensitive than a clinical endpoint BE study
• Due to low potency of ointment, a clinical endpoint BE study may not be feasible or reliable |
BE of acyclovir ointment 5%: additional considerations

- The generic and RLD products must be Q1/Q2.
- To show that generic and RLD are also Q3, conduct in vitro tests to compare:
 - Release rates
 - Particle size, viscosity, morphic form, PEG molecular weight distribution
- If not Q1/Q2, conduct clinical endpoint study.
For the diclofenac sodium gel 1%, FDA recommends a PK endpoint study and a clinical endpoint study to demonstrate BE.
For diclofenac sodium gel 1%, FDA recommends two in vivo BE studies

<table>
<thead>
<tr>
<th>Drug substance</th>
<th>Indication</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Non-steroidal anti-inflammatory</td>
<td>• Relief of the pain of osteoarthritis</td>
<td>• Inhibits cyclooxygenase, resulting in decreased synthesis of molecules associated with inflammatory response</td>
</tr>
</tbody>
</table>
For diclofenac sodium gel 1%, FDA recommends two in vivo BE studies

<table>
<thead>
<tr>
<th>Site of action</th>
<th>RLD formulation</th>
<th>Sensitivity, feasibility</th>
</tr>
</thead>
</table>
| • The joint or local soft tissue
• Diclofenac penetrates the soft tissue
• Diclofenac is also well-absorbed
• Unclear if effects are due solely to local delivery or if systemic delivery contributes | • A gel comprised of several different inactive ingredients | • A PK study is most sensitive, accurate, reproducible but may be unsuitable if drug acts mainly by local action
• As there is evidence that drug may be locally-acting, an in vivo study with clinical endpoints should also be conducted |
The FDA will consider granting biowaivers for topical products provided certain criteria are met.
Criteria for granting a biowaiver for a topical solution

• Formulation is a solution for application to skin;

• Generic and RLD contain the same active ingredient in the same concentration and dosage form;

• The generic contains no inactive ingredient or other change in formulation from the RLD that might significantly affect availability
 – e.g., FDA may request in vivo and/or in vitro BE studies if generic and RLD have differences in penetration enhancers
Biowaivers for products coded “AT” in FDA’s Orange Book

- Applies to very few topical formulations approved prior to 1962
- Underwent review by the Drug Efficacy Study Implementation (DESI) panels of experts
- Generic and RLD must contain same active ingredient and be of same dosage form
- Examples
 - Erythromycin topical gel
 - Hydrocortisone topical cream
Summary and conclusions

- FDA determines the optimal BE approach for each proposed generic topical formulation on a case-by-case basis

- Approach may be PK, PD, clinical, in vitro

- In determining the optimal BE approach for each product, FDA considers
 - Drug mechanism of action, site of action
 - Complexity of RLD formulation
 - Feasibility, sensitivity of an approach
References

 - Voltaren® gel, NDA 22122
 - Electronic Orange Book
 - Bioequivalence Recommendations Guidance for the diclofenac sodium topical gel, 1% strength
- http://www.regulations.gov
 - Acyclovir ointment 5%, Docket No. FDA-2012-P-0779
 - Fluocinolone acetonide topical oil 0.01%, Docket No. FDA-2004-P-0215
 - Fluorouracil cream, Docket No. 2004P-0557/CP1
 - Lidocaine patch 5%, Docket No. FDA-2006-P-0356
 - 21 CFR Section 320.22 (biowaivers)
Acknowledgements

• Josephine Aimiuwu
• Shawn Blue
• April Braddy
• Parthapratim Chandaroy
• Dale Conner
• Kuldeep Dhariwal
• Brenda Gierhart
• Tapash Ghosh
• Yih-Chain Huang
• Loice Kikwai
• Rob Lionberger

• Steve Miller
• Jeff Murray
• Cecelia Parise
• John Peters
• Kimberly Raines
• Andre Raw
• Shirley Seo
• Aaron Sigler
• Ethan Stier
• Scott Vehovic
• Keith Webber
Thank you for your attention!