Parenteral and Ophthalmic Drug Products Leachables and Extractables
Working Group

Issued and Effective
December, 2009

Study Protocol – Stage 1

Experimental Protocol for Qualitative Controlled Extraction Studies on Material
Test Articles Representative of Prefilled Syringe (PFS) and Small Volume
Parenteral (SVP) Container Closure Systems
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>II. PURPOSE AND SCOPE OF WORK (STUDY PROTOCOL STAGE 1)</td>
<td>3</td>
</tr>
<tr>
<td>III. REGULATORY STATUS</td>
<td>5</td>
</tr>
<tr>
<td>IV. SAFETY AND ENVIRONMENTAL IMPACT</td>
<td>5</td>
</tr>
<tr>
<td>V. TEST ARTICLES</td>
<td>5</td>
</tr>
<tr>
<td>VI. CHEMICALS AND EQUIPMENT</td>
<td>6</td>
</tr>
<tr>
<td>A. Extraction Solvents</td>
<td>6</td>
</tr>
<tr>
<td>B. Additional Chemicals</td>
<td>7</td>
</tr>
<tr>
<td>C. Extraction Apparatus</td>
<td>7</td>
</tr>
<tr>
<td>D. Analytical Instrumentation</td>
<td>8</td>
</tr>
<tr>
<td>VII. EXTRACTION PROCEDURES</td>
<td>8</td>
</tr>
<tr>
<td>A. General</td>
<td>8</td>
</tr>
<tr>
<td>B. Extraction Maps</td>
<td>9</td>
</tr>
<tr>
<td>1. Test Materials Versus Extraction Solvent</td>
<td>10</td>
</tr>
<tr>
<td>2. Extraction Method Versus Extraction Solvent</td>
<td>10</td>
</tr>
<tr>
<td>C. General Considerations</td>
<td>10</td>
</tr>
<tr>
<td>D. Soxhlet Extraction</td>
<td>11</td>
</tr>
<tr>
<td>1. Sample Preparation</td>
<td>11</td>
</tr>
<tr>
<td>2. Extraction Conditions</td>
<td>11</td>
</tr>
<tr>
<td>E. Reflux</td>
<td>12</td>
</tr>
<tr>
<td>1. Sample Preparation</td>
<td>12</td>
</tr>
<tr>
<td>2. Extraction Conditions</td>
<td>12</td>
</tr>
<tr>
<td>F. Sonication</td>
<td>12</td>
</tr>
<tr>
<td>1. Sample Preparation</td>
<td>12</td>
</tr>
<tr>
<td>2. Extraction Conditions</td>
<td>12</td>
</tr>
<tr>
<td>G. Sealed Vessel Extraction</td>
<td>13</td>
</tr>
<tr>
<td>1. Sample Preparation</td>
<td>13</td>
</tr>
<tr>
<td>2. Extraction Conditions</td>
<td>13</td>
</tr>
<tr>
<td>VIII. ANALYTICAL METHODS</td>
<td>15</td>
</tr>
<tr>
<td>A. System Suitability</td>
<td>15</td>
</tr>
<tr>
<td>B. Gas Chromatography (GC)</td>
<td>22</td>
</tr>
<tr>
<td>1. General</td>
<td>22</td>
</tr>
</tbody>
</table>
Experimental Protocol for Plastic Material Test Articles, Stage 1

69 2. Sample Preparation 22
70 3. Operating Conditions 25
71 4. General Comments 26
72 C. High Performance Liquid Chromatography (HPLC) 26
73 1. General 26
74 2. Sample Preparation 26
75 3. Operating Conditions 26
76 4. General Comments 26
77 D. Inductively Coupled Plasma Atomic Spectroscopy (ICPAS) 27
78 1. General 27
79 2. Sample Preparation 28
80 3. Operating Conditions 28
81 4. General Comments 28
82 E. Headspace GC/MS Analysis 28
83 1. General 28
84 2. Sample Preparation 29
85 3. Operating Conditions 29
86 4. General Comments 30
87 IX. DATA EVALUATION AND REPORTING 30
88
89 A. Qualitative Analysis 30
90 B. Semi-Quantitative Measurement 31
92 X. GLOSSARY 31
93 XI. REFERENCES 31
95
96
97
I. Introduction

It has been well established that substances extracted by drug products from their container closure systems can affect the drug product’s safety and efficacy. Regulatory guidance has provided some recommendations regarding the analysis and toxicological safety assessment (i.e., qualification) of such substances. Thus, for example, the FDA issued *Container Closure Systems for Packaging Human Drugs and Biologics – Chemistry, Manufacturing and Controls (CMC) documentation Guidance for Industry* in May 1999. In addition, the European Medicines Agency (EMEA) issued its *Guideline on Plastic Immediate Packaging Materials* in May 2005.

Specific Guidance for Orally Inhaled and Nasal Drug Products (OINDP) is contained in two CMC Guidelines addressing OINDP: (i) the draft *Guidance for Industry, Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Drug Products, Chemistry, Manufacturing, and Controls Documentation* (November, 1998); and (ii) the *Guidance for Industry, Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products Chemistry, Manufacturing, and Controls Documentation* (July, 2002).

In September 2006, the Product Quality Research Institute (PQRI) issued a Recommendation entitled “Safety Thresholds and Best Practices for Extractables and Leachables in Orally Inhaled and Nasal Drug Products.” This Recommendation provided a scientific rationale and process to identify, quantify and establish the biological safety (i.e. qualify) of leachables and/or extractables where appropriate, in OINDP. Included in this Recommendation were experimental protocols, and the results thereof, for establishing Best Demonstrated Practices for the performance of Controlled Extraction Studies, specifically relevant of the OINDP dosage forms.

The PQRI Parenteral and Ophthalmic Drug Products (PODP) Leachables and Extractables Working Group has developed this experimental protocol as an means of establishing Best Demonstrated Practices for the performance of Controlled Extraction Studies, specifically relevant for PODP container closure systems and dosage forms. This protocol considers the processes by which a Controlled Extract is generated, the processes by which a Controlled Extract is analyzed and processes by which the test results are evaluated and interpreted, specifically within the context of the Working Group’s approved Work Plan and experimental hypothesis.

This experimental protocol will be used by all participating laboratories and investigators.

II. Purpose and Scope of Work (Study Protocol Stage I)

The purpose of the experiments outlined in this protocol is to generate data from Controlled Extraction Studies, which the Working Group will use to investigate its hypotheses:

3 Available at http://pqri.org/pdfs/LE_Recommendations_to_FDA_09-29-06.pdf
1. Threshold concepts that have been developed for safety qualification of leachables in OINDP can be extrapolated to the evaluation and safety qualification of leachables in PODP, with consideration of factors and parameters such as dose, duration, patient population and product dependent characteristics unique to various PODP types.

2. The science-based best demonstrated practices established for the OINDP pharmaceutical development process can be extrapolated to PODP container closure systems.

3. Threshold and best practices concepts can be integrated into a comprehensive process for characterizing container closure systems with respect to leachable substances and their associated impact on PODP safety.

Controlled Extraction Studies will be performed following the general methodologies contained in this protocol. Test articles will be subjected to different extraction conditions to establish how different experimentally controlled parameters affect the resulting extractables profiles. Of specific interest to the Working Group are the parenteral and ophthalmic dosage forms, particularly Small Volume Parenterals (SVP), Large Volume Parenterals (LVP), Pre-filled Syringes (PFS) and Blow-Fill-Seal systems (BFS). This Stage 1 Protocol specifically focuses on the SVP and PFS dosage forms and on the generation of qualitative extractables profiles. Future Stages will focus on additional dosage forms and/or quantitative aspects of extractables profiling. The intent of this Stage 1 assessment is to generate the fundamental information from which Best Demonstrated Practices can be derived; it is not the intent of this Stage 1 assessment to prospectively establish the practices used in this study as the Best Demonstrated Practices themselves.

As no single analytical technique can be used to identify and quantify all unknown extractables, a variety of methods will be utilized in this protocol to maximize the likelihood that all predominant extractable compounds associated with the test articles are accounted for and appropriately evaluated. Overlap between methods will supply corroborating data that demonstrate the validity of the procedures. To provide a full analytical survey of possible analytes the following strategy will be employed:

1. Gas Chromatography with appropriate sampling/injection and detection strategies (e.g. Flame Ionization Detection (GC/FID) and Mass Spectrometry (GC/MS)) for identification and assessment of volatile and semi-volatile extractables.

2. High Performance Liquid Chromatography with appropriate detection strategies (e.g. Diode Array Detection (HPLC/DAD), Mass Spectrometry (LC/MS)) for identification and assessment of relatively polar and non-volatile extractables.

3. Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) and/or Inductively Coupled Plasma/Atomic Emission Spectroscopy (ICP/AES) to detect single elements in the extracts (i.e. metals).

While analytical tests and measurements, such as pH, UV absorbance, and total organic carbon (TOC), can provide insight into the general chemical nature and amount of extracted substances,
they do not directly provide information for the identification and/or quantitation of individual extractables and thus will not be utilized in this study.

Studies designed to assess recovery (i.e. mass balance) for individual extractables relative to the known formulations of chemical additives in the various test articles, or reproducibility of extractables profiles for multiple “batches” of any particular test article are not within the scope of this Stage of the test protocol. Additionally, the extraction procedures, analytical techniques/methods, and analysis conditions described in this experimental test protocol will not be fully and rigorously validated. Nevertheless, the scientific credibility of the data generated in this study shall be established via the utilization of system suitability testing with all the analysis methods and by the expert review of the generated data. Finally, “special case” classes of extractables that have defined and highly specific analytical methods that are generally accepted and commonly used for their identification and quantitative assessment will not be considered in this study.

III. REGULATORY STATUS

This experimental test protocol will be conducted in the spirit of Good Laboratory Practices and Good Manufacturing Practices (GXP) requirements. All experiments shall be documented based on the appropriate GXP compliance systems in a participating laboratory. Any changes or clarifications that a participating laboratory makes to this test protocol shall be documented as appropriate, and discussed/approved by the Study Coordination as appropriate.

IV. SAFETY AND ENVIRONMENTAL IMPACT

Chemicals and reagents used in this study (e.g. organic solvents commonly used to enhance solubility of lipophilic targets and to increase transport of small molecules out of complex matrices) may be flammable and/or pose short-term and long-term environmental health risks. Care must be exercised with their use. Consult the Material Safety and Data Sheet (MSDS) for appropriate personal protection and disposal. Safety risks associated with the various processes and procedures performed in this study may exist and should be understood and managed using such strategies as environmental control and personal protection.

V. TEST ARTICLES

A list of the test articles available for use in this study is provided in Table 1. Test articles will be provided in an appropriate form for use as test articles. Certain, but not necessarily all, details of the additive formulations and manufacturing conditions for these test articles are known and are captured in Table 1.
<table>
<thead>
<tr>
<th>MATERIAL TYPE</th>
<th>MATERIAL TYPE</th>
<th>MATERIAL APPLICATION</th>
<th>COMPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low density polyethylene (LDPE)</td>
<td>Overpouch</td>
<td>Blown Film</td>
<td>Dow 640-I LDPE resin; Irganox B 215 (2:1 blend of Irgafos 168 and Irganox 1010) 1000 ppm, BHT 200 ppm, Calcium Stearate 500 ppm, Erucamide 500 ppm, Chimassorb 944 2000 ppm</td>
</tr>
<tr>
<td>Cyclic Olefin (COC)</td>
<td>Syringe barrels, vials</td>
<td>Plaques</td>
<td>Irganox 1010, Ultramarine Blue</td>
</tr>
<tr>
<td>Polycarbonate (PC)</td>
<td>Port Tubes</td>
<td>Injection molded plaques</td>
<td>0.05 PHR Irganox 1076, 0.1 PHR Irgafos 168</td>
</tr>
<tr>
<td>Poly (vinyl chloride) (PVC)</td>
<td>Solution Bags, tubing</td>
<td>Pellets</td>
<td>PVC resin; DEHP 30%; Epoxidized oil 7%, Zn stearate 0.5%; Ca stearate 0.5%; Stearamide 1%</td>
</tr>
<tr>
<td>Rubber (Elastomer) (RE)</td>
<td>Gaskets, stoppers, closures</td>
<td>Sheets</td>
<td>Brominated isobutylene isoprene copolymer (57.3%); calcined aluminum silicate, 38.2%, titanium dioxide, 1.2%; paraffinic oil, 1.2%; zinc oxide, 0.6%; polyethylene, 0.6%; SRF Carbon block mixture, 0.4%; calcined magnesium oxide, 0.3%; 4,4'-dithiodimorpholine/polyisobutylene, 0.3%</td>
</tr>
</tbody>
</table>

VI. CHEMICALS AND EQUIPMENT

Extraction and analytical methods were chosen and designed to utilize chemicals, apparatus, and instrumentation available in typical laboratories routinely involved with this type of study.

A. Extraction Solvents

Chemicals required for the use as, or preparation of, extraction solvents, are as follows:

- Laboratory research grade water or Water for Injection (WFI), appropriately sourced, collected and stored to minimize background levels of extraneous substances.
- Potassium chloride
- Hydrochloric acid, 0.1 N
- Sodium phosphate monobasic
- Sodium phosphate dibasic
- Sodium hydroxide, 1 N
- Isopropyl alcohol (glass bottled; IPA)
- Hexane (glass bottled)
The preparation of several of these extraction solvents is as follows:

- Water at pH 2.5 (HCl/KCl mixture): The KCl solution is prepared at 0.01M. Weigh 1.5 grams of KCl into a 2.0 L vol flask containing 1500 mL water. Add 60 mL 0.1 N HCl. Dilute to volume with water. This final solution is 0.01 M KCl and 0.003 M HCl, which should have a pH of 2.5.

- Water at pH 9.5: Weigh 1.24 grams sodium phosphate monobasic and 18.7 grams of sodium phosphate dibasic, transfer to an appropriate vessel, and dissolve in 2 liters of water. The pH of this solution is reported to be 8.0. Titrate with 1 N NaOH to get a pH of 9.5. This solution is 0.0045 M monobasic and 0.066 M dibasic.

- IPA/Water (1/1): Mix equal volumes of IPA and water.

B. Additional Chemicals

- Analytical reagents required to perform the analytical testing.
- Reference and/or Internal standards required to perform the analytical testing.

C. Extraction Equipment

1. Soxhlet Extraction
 - Soxhlet apparatus.
 - All glass labware for these extractions must be acid-washed prior to use.
 - The use of any lubricants, such as vacuum grease on ground glass joints, should be avoided.

2. Reflux
 - Reflux apparatus [e.g. round bottom flask (200 mL or larger), condenser with ground glass joints, hot plate or heating mantle].
 - All glass labware for these extractions must be acid-washed prior to use.
 - The use of any lubricants, such as vacuum grease on ground glass joints, should be avoided.

3. Sealed Container
 - Teflon [Savillex (6133 Baker Road, Minnetonka, MN 55345-5910 USA, Phone: 952-935-4100, E-mail: info@savillex.com), Part # 0108, 8 fl. Oz. Teflon Jar]
 - Pyrex [VWR (Customer Service: 1-800-932-5000), Catalog # 89000-236, Media / Storage Bottles with Standard GL45 Polypropylene Cap, 250 mL] containers
 - All glass labware for these extractions must be acid-washed prior to use. Teflon vessels are used with the high pH extractions to avoid any leaching from glass, especially for samples for ICP analysis
● Oven with operating range of 30 to 75 °C; explosion proof

4. Sonication
 ● General laboratory ultrasonic bath
 ● Calibrated thermometer
 ● Extraction vessel
 ● Must have wide enough neck to allow addition of test article
 ● Must be of minimum capacity 100 mL
 ● Must be sealable
 ● All glass labware for these extractions must be acid-washed prior to use. Alternatively, Teflon vessels may be used to avoid any leaching from glass.

D. Analytical Instrumentation

● Gas chromatograph equipped with a Flame Ionization Detector (GC/FID)
● Gas chromatograph equipped with a Mass Spectrometer (GC/MS). GC systems that employ flow splitting to accomplish FID and MS detection in tandem could be used in this study.
● Headspace Sampler/Injector (HS) for GC/MS Instrumentation.
● Liquid chromatograph equipped with a photodiode array detector
● Liquid chromatograph equipped with an APCI (Atmospheric Pressure Chemical Ionization) capable Mass Spectrometer (LC/MS). Preference is given to LC systems that are capable of both DAD and MS detection. Additional detectors (e.g. corona assisted discharge detectors, evaporative light scattering) may be used as appropriate.
● Inductively Coupled Plasma Mass Spectrometer (ICP/MS, preferred) and/or Inductively Coupled Plasma Atomic Emission Spectrometer (ICP/AES)

VII. EXTRACTION PROCEDURES

A. General

In the PQRI OINDP studies, extractions were performed on each test article using three solvents representing a range of polarity, specifically

● methylene chloride (dichloromethane)
● 2-propanol (isopropanol, IPA)
● hexane (n-hexane, not hexanes).

This was appropriate in the case of OINDP given the nature of the drug vehicles used in those types of products (organic solvents) and the conditions of contact between the drug vehicles and the container closure system (continuous direct contact over shelf life).

While the use of such extraction solvents may be relevant for PODP products, a significant portion of PODP products are water-based and the three solvents previously employed do not
address the unique solubilizing properties of water and aqueous buffer systems. Thus in the case
of PODP, the OINDP solvents will be augmented by aqueous extraction media. These additional
aqueous extraction media, and their associated justification, include
* Water at pH 2.5 (HCl/KCl mixture); justification, few therapeutic products are lower than pH
2.5.
* Water at pH 9.5 (Phosphate buffer); justification, few therapeutic products are higher in pH
than 9.5.
* 1/1 IPA/water; justification; simulates aqueous formulations containing solubilizing agents,
provides for trend analysis (with IPA and water alone).
Thus, the five extraction media to be used in this Stage 1 Protocol are the three aqueous systems
listed above, IPA and hexane.

Similarly, the extractions performed in the PQRI OINDP study, including Soxhlet and reflux,
were consistent with the nature of the test materials, the extraction solvents and the nature of
OINDP products. Because a significant portion of PODP products are water-based, extractions
performed in this study will be include the OINDP methods and extraction methods compatible
with aqueous extraction media, including sealed vessel and sonication extraction.
The specific operational details associated with performing these extractions are outlined in the
following sections. Note that the outlined extraction parameters and conditions maybe subject to
modification and the details of any modified extraction process will be established in
consultation with study coordinator prior to initiation of experimental work in any particular
laboratory. Additionally, all extractions should be performed with appropriate extraction blanks.

B. Extraction Maps

The number of potential test situations, defined as the coupling of a test material, an extraction
solvent and an extraction process, is large and addressing each individual test situation is not
necessary to generate relevant information upon which best demonstrated practice
recommendations may be based. Test situations that are within the scope of this study are
delineated in the following Extraction Maps. The intent of this Stage 1 assessment is to generate
the fundamental information from which best demonstrated practices can be derived; it is not the
intent of this Stage 1 assessment to establish the practices used in this study as best demonstrated
practices themselves.

1. Test Material Versus Extraction Solvent Map

Table 2 establishes which extraction solvents will be utilized with which materials.
Table 2. Material Versus Extraction Solvent Map (1, 3)

<table>
<thead>
<tr>
<th>Material</th>
<th>pH 2.5</th>
<th>pH 9.5</th>
<th>IPA/Water</th>
<th>IPA</th>
<th>Hexane</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>---</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PC (4)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PVC (4)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rubber</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>COC</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Notes: (1) An X denotes a material/solvent couple that will be performed, an --- denotes a couple that will not be performed.

(2) By Headspace analysis.

(3) During the course of this study it may be the case that certain material – solvent couples will be incompatible. Such incompatibilities should be reported to the PODP study coordinator and incompatible extracts should not be tested.

(4) Both reflux and sealed vessel with the IPA/Water mixture.

2. Extraction Method Versus Extraction Solvent Map

Table 3 establishes which extraction methods will be utilized with which extraction solvents.

Table 3. Extraction Method Versus Extraction Solvent Map (1, 4)

<table>
<thead>
<tr>
<th>Method</th>
<th>Aqueous</th>
<th>Mixed</th>
<th>Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 2.5</td>
<td>pH 9.5</td>
<td>IPA/Water</td>
</tr>
<tr>
<td>Soxhlet</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Reflux</td>
<td>---</td>
<td>---</td>
<td>X (5)</td>
</tr>
<tr>
<td>Sonication</td>
<td>X (2)</td>
<td>X</td>
<td>---</td>
</tr>
<tr>
<td>Sealed Vessel</td>
<td>X (3)</td>
<td>X (3)</td>
<td>---</td>
</tr>
</tbody>
</table>

Notes: (1) An X denotes a method/solvent couple that will be performed, an --- denotes a couple that will not be performed.

(2) Under autoclave conditions (121°C for 1 hr).

(3) Storage at 55°C for 3 days.

(4) During the course of this study it may be the case that certain material – solvent couples will be incompatible. Such incompatibilities should be reported to the PODP study coordinator and incompatible extracts should not be tested.

(5) This testing will only be performed for the PC and PVC materials.

C. General Considerations

Care in experimental approach should be exercised in terms of producing extracts that are free from analytical artifacts. Glass is the appropriate vessel for samples intended for organic analysis, while Teflon is recommended for inorganic (metals) analysis. Glass is a problem in metal analysis especially at higher pHs due to leaching of glass (e.g. Si, B, Al, Na). Teflon is a problem with organics due to adsorption of extractables.
Extraction vessels shall be cooled and the materials separated from the liquid, by an appropriate means. The extracts shall be collected and stored in an appropriate vessel with minimal headspace. Retain the extract for analysis in such a way as to preserve their compositional integrity (protect from light, heat and evaporation losses).

For all extractions, the weight of test article sample, extracting solvent volume, and sample extract concentration factors should be established and adjusted so that it is possible to detect and identify individual extractables present at the 10 µg/g (ppm) level. Individual extractables may be detected and identified at lower levels if the analytical method employed is readily capable of achieving such sensitivity.

For each extraction technique and solvent type, appropriate blanks (no test article sample) must be prepared. These must be prepared concurrently using a different extraction apparatus (same type) under the same conditions, or by using the same apparatus prior to charging with sample. The extraction conditions represent the censuses opinion of the PODP chemistry subteam.

All extracts should be visually inspected prior to analysis to ensure that they are free from obvious particulate matter. Should such an inspection reveal particulate matter, this finding should be reported to the Study Coordinator prior to proceeding with sample analysis. In most cases it is likely that the Study Coordinator will request that the sample be processed in such a way that the particulate is removed from the extract prior to its testing. Collection of the removed particulate may be requested so that the material itself can be analyzed and identified.

D. Soxhlet Extraction

1. Sample Preparation

Transport of extractables out of the complex matrix may be affected by the surface area and thickness of the test article. Test articles may be “processed” (or “sized”) by appropriate methods, cutting, not grinding into appropriately sized pieces in order to fit into the reflux apparatus

2. Extraction Conditions

Under normal laboratory conditions, three physical extraction parameters may be modified, turnover number, total extraction time and temperature. Temperature is the most difficult of the three parameters to control as the sample holder is maintained above the vapor level (temperature may be above the boiling point), but will be continuously bathed in freshly distilled solvent (coil temperature). It is recommended that the coil temperature be kept as low as possible to avoid heating above the solvent flashpoint.

Turnover number is controlled by the heating rate and should be limited by safety concerns. At low turnover numbers, the extraction characteristics will resemble those of reflux and may be limited by equilibrium phenomena. It is recommended that turnover numbers to be at least ten during the course of the extraction.
Sample amounts should be targeted at 5 g using 200 mL of solvent. Extraction time should be
approximately 24 hours and care should be taken to guard against possible degradation of
thermally labile or reactive compounds.

E. Reflux

Reflux extraction is a common and readily implemented approach for the production of
extractables. Conditions are easily standardized as the temperature and pressure are at the
defined boiling points of the extraction solvents. Unlike Soxhlet extraction, reflux extraction is
an equilibrium phenomenon.

1. Sample Preparation

Transport of extractables out of the complex matrix may be affected by the surface area and
thickness of the test article. Test articles may be “processed” (or “sized”) by appropriate
methods, cutting, not grinding into appropriately sized pieces) in order to fit into the reflux
apparatus.

2. Extraction Conditions

Sample amounts should be approximately 5 grams in 200 mL of solvent in a round bottom flask.
The only adjustable physical parameter for reflux extraction is time. Reflux the sample for a
period of time between 1 and 2 hours. The solvent reservoir level must be monitored and
periodically recharged to provide the correct amount of solvent. Extractions that produce
physical changes in the test materials, especially dissolution, should be terminated.

In reflux extraction, the sample to solvent ratio may affect the completeness of the technique.
Establishing this ratio should be addressed when optimizing the method.

F. Sonication

Sonication uses ultrasonic energy instead of thermal energy to increase the rate of mass transport
of small analytes out of a solid matrix. Similar considerations as reflux extraction (equilibrium
conditions) should be evaluated, but these cannot be calculated using thermodynamic
parameters. Sonication equipment may be standardized by measuring the temperature rise after a
set exposure time and evaluating the energy deposited into the solvent. Standardization of
conditions should be accomplished after consultation between participating laboratories.

1. Sample Preparation

Transport of extractables out of the complex matrix may be affected by surface area and
thickness of the test article. Test articles may be “processed” by appropriate methods (e.g.
cutting, not grinding into appropriately sized pieces) in order to fit into the sonication apparatus.
2. **Extraction Conditions**

In sonication, the sample to solvent ratio may affect the completeness of the technique. Target sample solvent ratio is 5 grams in 200 mL of solvent. If scaling down it is appropriate to maintain this ratio. The only adjustable physical parameter for sonication is time. Extraction times used in this study shall be approximately 2 hours. The extraction time should be such that the extraction does not produce a noticeable change in the test material (e.g., dissolution). Bath temperatures should be standardized using either ice-water (0 °C), or monitored by a calibrated thermometer. Appropriate safety measures must be implemented to eliminate the potential for unsafe situations to occur.

G. Sealed Vessel Extraction

Sealed Vessel extraction utilizes thermal energy to facilitate the mass transport of extractables out of a solid matrix. Conditions are easily standardized and sealed vessel extraction is an equilibrium phenomenon.

1. **Sample Preparation**

Transport of extractables out of the test articles may be impacted by the physical state of the material to be extracted (e.g., surface area and thickness), the portions of material and extracting solvent in the extraction vessel and the temperature and duration of the extraction. Test articles may be “processed” by appropriate size reduction methods (such as cutting) to fit into and fill the extraction apparatus.

2. **Extraction Conditions**

The test material may be rinsed with water and dried prior to testing so as to remove any surface contamination. Approximately 5 grams of material will be contacted with a 200-mL volume of extracting solvent by placing both into the extraction vessel to produce the test unit (the combination of the test material, the extracting solution and the extraction vessel). Add the required quantity of material to a rinsed extraction vessel. Add the required volume of extracting medium to the vessel. Mix and close vessel tightly. Autoclave extraction unit at a nominal temperature of 121 °C for 1 hour. Allow the vessel to cool. Separate, by an appropriate means, the extract from the extracted material. Collect the extract in an appropriate vessel with minimal headspace. Retain the extract for analysis. Replicate extractions should be performed. Extracts should be stored prior to and during analysis in such a way as to preserve their compositional integrity (protect from light, heat and evaporation losses).

Add the required quantity of material to a rinsed extraction vessel. Add the required volume of extracting solution to the vessel. Mix and close vessel tightly. Mark the vessel so that any loss of fluid can be detected and rejected from further analysis. For the IPA/Water mixture the extraction should be performed at a temperature of 55°C (which is 10°C or more below the boiling point of the proposed extraction solvents) for 3 days. Allow the vessel to cool. Separate,
by an appropriate means, the extract from the extracted material. Collect the extract in an appropriate vessel with minimal headspace.
VIII. ANALYTICAL METHODS

A. System Suitability

All testing performed in support of this Protocol shall include appropriate system suitability assessment. Demonstration of system suitability will be accomplished according to the following three-step approach:

Step 1: Each participating laboratory will ensure that analytical instrumentation is in proper condition and will demonstrate instrument suitability by following its proprietary (in-house) procedures.

Step 2: Each participating laboratory will follow the procedures defined in this Protocol which involve the characterization of specified test mixtures by GC, HS-GC, LC and ICP. The test mixtures are suitable to demonstrate adequate and effective analytical performance (for example, separation efficiency, selectivity and sensitivity). All generated system suitability data will be evaluated with regard to the required specifications/acceptance criteria.

Step 3: Internal Standardization. Specifically for the GC methodology, the extracts will be supplemented by introducing a surrogate internal standard and an injection standard. Analysis of these standards complements system suitability testing by providing a means of establishing the effectiveness of sample preparation/sample introduction processes. The use of internal standards is discussed in the section describing the actual GC analysis of the extracts.

Table 4 presents a list of system suitability analytes for GC and HPLC based analytical techniques.

System suitability testing for the ICP trace element analysis shall include the preparation and testing of a system suitability test mixtures that contains all the targeted elements listed previously at a concentration of 0.25 µg/ml. System suitability testing shall consist of the demonstration that all elements can be detected at the prepared concentration.

All system suitability testing performed during the course of this study and all system suitability test results thereof shall be reported to, and reviewed by, the PODP study coordinator before any analytical data is accepted by the PODP Working Group. Failure to meet acceptance criteria will be the basis for rejecting analytical data provided by the participating laboratory and frequent failures by a participating laboratory can be the basis for the disqualification of that laboratory.
Table 4. Composition of the System Suitability Test Mixtures.

Compounds for HPLC Analysis:

Custom-made test mixture to be prepared by the participating laboratories from standard grade reference materials:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Abbreviation</th>
<th>LC Test Mixture Concentration (µg/ml, ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprolactam</td>
<td>CAP</td>
<td>1</td>
</tr>
<tr>
<td>Butylatedhydroxytoluene</td>
<td>BHT</td>
<td>5</td>
</tr>
<tr>
<td>Diphenylamine</td>
<td>DPA</td>
<td>5</td>
</tr>
<tr>
<td>Mono-(2-ethylhexyl) phthalate</td>
<td>MEHP</td>
<td>1</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>SA</td>
<td>5</td>
</tr>
<tr>
<td>Di-(2-ethylhexyl phthalate)</td>
<td>DEHP</td>
<td>1</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>BPA</td>
<td>1</td>
</tr>
</tbody>
</table>

The test mix should be prepared by appropriate dilution of more concentrated stock solutions, prepared using solvents appropriate for the individual reagents. The final composition of the test mixture should be similar to, or compatible with, the mobile phase used in the LC analysis.

Compounds for GC Analysis, Grob Mixture:

Commercial Sources:
e. g.: "Grob-Test-Mix", Cat# 11373, Restek

Reference:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration, µg/ml (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L(+)-2,3-butane diol</td>
<td>27</td>
</tr>
<tr>
<td>n-decane</td>
<td>14</td>
</tr>
<tr>
<td>2,6-dimethylaniline</td>
<td>16</td>
</tr>
<tr>
<td>2,6-dimethylphenol</td>
<td>16</td>
</tr>
<tr>
<td>methyl decanoate (C10:0)</td>
<td>21</td>
</tr>
<tr>
<td>methyl dodecanoate (C12:0)</td>
<td>21</td>
</tr>
<tr>
<td>methyl undecanoate (C11:0)</td>
<td>21</td>
</tr>
<tr>
<td>nonanal</td>
<td>20</td>
</tr>
<tr>
<td>1-octanal</td>
<td>18</td>
</tr>
<tr>
<td>n-undecane (C11)</td>
<td>14</td>
</tr>
</tbody>
</table>

GC Test Mixture:

(Grob Mixture diluted 1/20 in methylene chloride)
Table 4. Composition of the System Suitability Test Mixtures (continued).

Compounds for Headspace GC Analysis:

Custom-made test mixture to be prepared by the participating laboratories from standard grade reference materials:

<table>
<thead>
<tr>
<th>Combined solution of the following substances in polyethylene glycol 200 (PEG 200):</th>
<th>HSGC Test Mixture I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/ml</td>
</tr>
<tr>
<td>Methanol</td>
<td>200</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>200</td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>100</td>
</tr>
<tr>
<td>Toluene</td>
<td>100</td>
</tr>
<tr>
<td>Trimethylsilanol</td>
<td>200</td>
</tr>
<tr>
<td>2-Ethyl hexanol</td>
<td>200</td>
</tr>
</tbody>
</table>

1 Preparation of SST-Sample:
- add 10 µl of the HS-Test-Mixture-I to a 20 ml crimp-cap vial
- add 10 µl of internal standard solution (2 mg of 1,4-Dioxane/ml PEG 200)

2 The material used is actually the sodium salt (sodium trimethylsilanolate).

The test mixture for headspace analysis can be prepared to contain the internal standard (1,4-Dioxane) at the discretion of the testing laboratory.

Composition of the ICP Test Mixture:

System suitability testing for the ICP trace element analysis shall include the preparation and testing of a system suitability test mixture that contains all the targeted elements listed previously at a concentration of 0.25 mg/L.

The system suitability mixtures are minimally analyzed twice in the analytical runs, at the beginning and at the end, thus establishing that adequate system performance is achieved and maintained.

The evaluation of the system suitability results is as follows:

LC Analysis: The chromatograms for the system suitability test mixture are examined for the presence of peaks corresponding to each analyte in the mix. While all analytes may not produce responses in all detection methods, all analytes should produce peaks in at least one detection method. All peaks should have a response with a signal to noise ratio (S/N) of 10 or greater. The closest elution peak pair shall exhibit a resolution of greater than 1.5. All peaks should be well-shaped, with a tailing factor less than 2.0. There should be no significant differences in the
chromatograms obtained at the beginning and the end of the chromatographic run. See Figure 1 for a sample chromatogram of the suitability test mixture.

GC Analysis: The chromatograms for the system suitability test mixture are examined for the presence of peaks corresponding to each analyte in the mix. While all analytes may not produce responses in all sample work-up methods (derivatized and non-derivatized), all analytes should produce peaks in at least one work-up method. All peaks should have a response with a signal to noise ratio (S/N) of 10 or greater. The closest elution peak pair shall exhibit a resolution of greater than 1.5. All peaks should be well-shaped, with a tailing factor less than 2.0. There should be no significant differences in the chromatograms obtained at the beginning and the end of the chromatographic run. See Figure 2 for a sample chromatogram of the suitability test mixture.

HSGC Analysis: The chromatograms for the system suitability test mixture are examined for the presence of peaks corresponding to each analyte in the mix. All analytes should produce peaks that have a response with a signal to noise ratio (S/N) of 10 or greater. The closest elution peak pair shall exhibit a resolution of greater than 1.5. All peaks should be well-shaped, with a tailing factor less than 2.0. There should be no significant differences in the chromatograms obtained at the beginning and the end of the chromatographic run. See Figure 3 for a sample chromatogram of the suitability test mixture.

ICP Analysis: It shall be demonstrated that all elements can be detected at the prepared concentration.

The performance expectations enumerated previously are general guidelines. All system suitability data shall be reviewed by the Protocol’s Study Coordinator and it is the responsibility of the Coordinator to evaluate the system suitability data and establish its acceptability.
Figure 1. LC/UV/MS Chromatograms of the Suitability Mixture.

CAP = caprolactam; BPA = Bisphenol A; MEHP = mono-(ethylhexyl) phthalate; SA = stearic acid; DA = dehydroabietic acid; DEHP = di-(2-ethylhexyl) phthalate. Peaks for BHT and DPA were not obtained in this run.
Figure 2. GC/FID Chromatograms of the Grob Mixture.

A. Underivatized.

<table>
<thead>
<tr>
<th>Peak ID</th>
<th>Compound</th>
<th>Peak ID</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3-Butanediol</td>
<td>7</td>
<td>2-ethyl hexanoic acid</td>
</tr>
<tr>
<td>2</td>
<td>Decane</td>
<td>8</td>
<td>2,6-Dimethyl aniline</td>
</tr>
<tr>
<td>3</td>
<td>1-Octanol</td>
<td>9</td>
<td>Methyl decanoate</td>
</tr>
<tr>
<td>4</td>
<td>Undecane</td>
<td>10</td>
<td>Dicyclohexylamine</td>
</tr>
<tr>
<td>5</td>
<td>1-Nonanal</td>
<td>11</td>
<td>Methyl undecanoate</td>
</tr>
<tr>
<td>6</td>
<td>2,6-Dimethyl phenol</td>
<td>12</td>
<td>Methyl dodecanoate</td>
</tr>
</tbody>
</table>

B. Derivatized.

<table>
<thead>
<tr>
<th>Peak ID</th>
<th>Compound</th>
<th>Peak ID</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Decane</td>
<td>7</td>
<td>2,6-Dimethyl phenol [TMS]</td>
</tr>
<tr>
<td>2</td>
<td>2,3-Butanediol [2TMS]</td>
<td>8</td>
<td>2,6-Dimethyl aniline [TMS]</td>
</tr>
<tr>
<td>3</td>
<td>Undecane</td>
<td>9</td>
<td>Methyl decanoate</td>
</tr>
<tr>
<td>4</td>
<td>1-Nonanal</td>
<td>10</td>
<td>Dicyclohexylamine</td>
</tr>
<tr>
<td>5</td>
<td>2-Ethyl hexanoic acid [TMS]</td>
<td>11</td>
<td>Methyl undecanoate</td>
</tr>
<tr>
<td>6</td>
<td>1-Octanol [TMS]</td>
<td>12</td>
<td>Methyl dodecanoate</td>
</tr>
</tbody>
</table>
Figure 3. GC/MS Chromatograms of the Headspace Suitability Mix.

Entire Chromatogram

Expanded view of 37 – 40 minutes.

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Methanol</td>
</tr>
<tr>
<td>31.3</td>
<td>Trimethylsilanol</td>
</tr>
<tr>
<td>32.0</td>
<td>Toluene</td>
</tr>
<tr>
<td>33.2</td>
<td>1,4-dioxane</td>
</tr>
<tr>
<td>38.0</td>
<td>Cyclohexanone</td>
</tr>
<tr>
<td>39.1</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>39.2</td>
<td>2-ethyl-1-hexanol</td>
</tr>
</tbody>
</table>
B. Gas Chromatography (GC)

1. General

Relatively volatile and semi-volatile compounds will be analyzed by Gas Chromatography (GC) using a predominantly non-polar capillary column with wide (40 °C to 300 °C) temperature programming. As noted previously, appropriate detection strategies will be employed (e.g., FID, MS). Each GC analysis will produce an extractables “profile” in the form of a Total Response Chromatogram (e.g., TIC for MS detection). As a first pass, identifications of individual extractables will be accomplished with manual interpretation of the Electron Ionization (EI) spectra assisted by computerized mass spectral library searching. Beyond this, more difficult identifications may require the collection of additional data (such as Chemical Ionization GC/MS for molecular weight confirmation and High Resolution Mass Spectrometry for elemental composition), the purchase of reference compounds, etc. The PODP study coordinator shall be consulted before a participating laboratory pursues the more difficult identifications.

2. Sample Preparation

The resulting extracts will usually contain low-level amounts of extractables. Sample concentration and/or solvent switching may be necessary to provide compatible samples for the analytical instrumentation. While it is possible to manipulate extracts to provide very large concentration ratios, this has the undesirable effect of concentrating normal solvent impurities. Therefore, extracts will be concentrated no more than 100X, which is reasonable given normal ACS reagent purities of 99+%. The process for preparing (working-up) the aqueous extracts for GC analyses is shown in Table 5. Similar evaporative sample concentration strategies may be utilized with the organic extracts.
| Sample Preparation, Liquid-liquid Extraction; pH 2.5 and pH 9.5 Solutions. | 1 A 50-mL portion of each of the solutions is transferred to a 125 mL separatory funnel.
2 A 1.0-mL aliquot of the surrogate internal standard solution is added to each sample.
3 25 mL of Dichloromethane (DCM) is added to each funnel.
4 Each funnel is shaken for 1 minute.
5 The layers are allowed to separate and the lower (DCM) layer is collected.
6 Steps 3 through 5 are repeated. The collected DCM layers are combined.
7 The pH of each pH 2.5 sample is adjusted to ≈10 with 5 N NaOH. The pH of the pH 9.5 sample is adjusted to ≈ 2 with 5 N HCl.
8 Steps 3 through 5 are repeated twice for the pH adjusted samples. The collected DCM layers from all extractions are combined.
9 The DCM extracts are dried by adding anhydrous sodium sulfate to each collection flask.
10 Each DCM extract is transferred from the collection flask to a different Turbovap concentration tube with DCM rinses, and concentrated to less than 0.5 mL. A 0.5 mL aliquot of the injection internal standard is then added to the Turbovap tube. The final volume is adjusted to approximately 1 mL with DCM.
11 0.5 mL of each concentrated extract is transferred from the Turbovap tube to an autosampler vial.
12 The remaining 0.5 mL aliquot of each of dichloromethane extract described above is transferred to separate amber autosampler vials for TMS derivatization (see below) |
| Sample Preparation, Liquid-liquid Extraction; IPA/Water Solutions | The same basic process as noted above will be followed for the IPA/water samples. In the first extraction step, these samples will be pH adjusted to ≈ pH 2 and extracted twice. In the second extraction step, the samples will be adjusted to ≈ pH 10 and extracted twice. The resultant DCM extracts will be combined, dried and concentrated per steps 9 through 11 above. |
| TMS Derivatization of Residues | 1 Approximately 100 μL dimethyl formamide is added to each amber autosampler vial prepared under step 12 above.
2 The contents of each vial are evaporated nearly to dryness using nitrogen.
3 To each of the sample extracts, and the standard solutions is added 100 μL of BSTFA w/ 1% TMCS (Pierce)
4 Each vial is capped and allowed to stand for one hour at approximately 70°C.
5 DCM is added to each auto-sampler vial to make a final volume of approximately 0.5 mL, and is mixed. |

The procedure contained in this Table is an example only and it is not required that participating laboratories adopt this procedure in either whole or in parts. However, any and all sample preparation procedures that will be used by a participating laboratory must be discussed with the PODP study coordinator prior to their utilization so that appropriate testing methodologies are utilized and harmonization between laboratories working on the same test articles can be achieved.

The procedure calls for the addition of a surrogate and injection internal standard, consistent with the system suitability assessment strategy enumerated previously. A surrogate internal standard is used to monitor the performance of the total procedure and is added to each extract in the intial stage of its work-up. Requirements for such an internal standard are:
- sufficiently stable
- sufficiently soluble in all extraction solvents
- amenable to back-extraction from aqueous extracts by organic solvents
- semi-volatile
- amenable to all detection principles
- selectively detectable
- amenable to TMS-derivatization

The surrogate internal standard compound that meets these criteria has been identified as 4,4’-(m-Phenylenediisopropylidene)diphenol (Bisphenol M):

CAS-no.: 13595-25-0
Molecular weight: 346.46
Molecular formula: $C_6H_4[C(CH_3)_2C_6H_4OH]_2$

Structure:

\[\text{Structure:} \]

Source: e. g. Aldrich #450464

The Surrogate Standard Solution is prepared by dissolving 100 mg of Bisphenol M in 100 ml of methanol, resulting in a concentration of 1000 µg/ml. This stock is further diluted 1 to 20 with methanol to produce the surrogate internal standard solution containing 50 µg/mL Bisphenol M.

An injection internal standard is used to monitor the performance of the instrumental process only and is added to each sample at the last stage of its work-up. Such an internal standard must be:

- sufficiently stable
- sufficiently soluble in final extract
- semi-volatile
- amenable to all detection principles
- selectively detectable

The injection internal standard compound that meets these criteria has been identified as 4,4’-(m-4,4’-Thiobis(3-methyl-6-t-butylphenol), Irganox 415:

CAS-no.: 96-69-5
Molecular weight: 358.538
Molecular formula: $C_{22}H_{30}O_2S$
The Injection Standard Solution is prepared as follows: 100 mg of Irganox 415 are dissolved in 20 ml of methanol, concentration = 5000 µg/ml. This stock is further diluted 1 to 100 with methanol to produce the surrogate internal standard solution containing 50 µg/mL Irganox 415.

The surrogate and injection internal standards are added to all samples to ensure that they are properly worked-up and injected. Two internal standards are used to isolate the analytical processes of sample work-up and instrumental analysis. The minimum performance expectation for the internal standards is that they be present in the sample chromatograms with a response whose signal to noise ratio is 10 or greater.

3. Operating Conditions

The following GC conditions (Table 6) serve as an illustration of a methodology which is suitable for testing the prepared samples. The procedure contained in this Table is an example only and it is not required that participating laboratories adopt this procedure in either whole or in parts. However, any and all sample analysis procedures that will be used by a participating laboratory must be discussed with the PODP study coordinator prior to their utilization so that appropriate testing methodologies are utilized and harmonization between laboratories working on the same test articles can be achieved.

Data cannot be collected while the injection solvent is in the ion source.

<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Operating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>J&W DB-5HT, 30m x 0.25mm, 0.1 µm film thickness</td>
</tr>
<tr>
<td>Oven Program</td>
<td>Start at 50°C, hold for 5 min.; ramp at 10°C/min to 300°C, hold for 5 min</td>
</tr>
<tr>
<td>Carrier Gas</td>
<td>He at 1 mL/min</td>
</tr>
<tr>
<td>Injection</td>
<td>Splitless; 2 µL.</td>
</tr>
<tr>
<td>Injector Temperature</td>
<td>310°C</td>
</tr>
<tr>
<td>FID Detector Temperature</td>
<td>250°C</td>
</tr>
<tr>
<td>MS Transfer Line</td>
<td>310°C</td>
</tr>
<tr>
<td>MS Detection Details</td>
<td>70 eV (+), mass range of 33 – 650 amu</td>
</tr>
<tr>
<td></td>
<td>(3.0 min or 6.0 min solvent delay used for un-derivatized or derivatized samples)</td>
</tr>
</tbody>
</table>
4. General Comments.

Note that the presented GC sample preparation and/or instrumental conditions are target conditions for all participating laboratories and investigators. The actual conditions employed by any participating laboratory should be reviewed by the PODP study coordinator prior to their utilization so that appropriate testing methodologies are utilized and harmonization between laboratories working on the same test articles can be achieved. In any event, the analyses performed by the participating laboratory must meet system suitability criteria, as established in Section VIII.A.

Any additional identification work beyond the first pass analysis will be performed only after consultation with the PODP study coordinator.

Chromatograms of the extracts should be compared to chromatograms of the extraction blanks so that peaks due to extractables can be delineated from peaks that reflect analytical artifacts.

C. High Performance Liquid Chromatography (HPLC)

1. General

Extracts and extraction blanks will be analyzed by High Performance Liquid Chromatography with appropriate detection strategies, including DAD and MS as noted previously. The method will use reversed-phase chromatography with a wide (gradient) range of solvent strengths. Each LC analysis will produce several extractables “profiles” in the form of a Total Ion Chromatogram (TIC), Extracted Ion Chromatograms (EIC) and UV chromatograms (total response and/or specific UV wavelengths). As a first pass, identifications of individual extractables will be accomplished with manual interpretation of the Atmospheric Pressure Ionization Electrospray (API-ES) information. The LC and GC chromatograms will be correlated to facilitate compound identification.

2. Sample Preparation

Unlike the GC analysis, the extracts and extraction blanks will typically not require extensive sample preparation prior to HPLC analysis as the extraction matrices are generally compatible with common HPLC mobile phases, thereby eliminating the need for solvent switching, and the detection methods are sufficiently sensitive that sample concentration is not required. However, some “solvent switching” may be necessary to produce samples that are HPLC-compatible.

3. Operating Conditions

The LC conditions in Table 7 serve as an illustration of a methodology which is suitable for testing the prepared samples. The procedure contained in this Table is an example only and it is not required that participating laboratories adopt this procedure in either whole or in parts. However, any and all sample analysis procedures that will be used by a participating laboratory must be discussed with the PODP study coordinator prior to their utilization so that appropriate
testing methodologies are utilized and harmonization between laboratories working on the same test articles can be achieved.

<table>
<thead>
<tr>
<th>Table 7. Operating Parameters, LC/UV/MS Analysis of the Extracts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Parameter</td>
</tr>
<tr>
<td>Column</td>
</tr>
<tr>
<td>Column Temperature</td>
</tr>
<tr>
<td>Mobile Stage Components</td>
</tr>
<tr>
<td>Mobile Stage Gradient</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mobile Stage Flow Rate</td>
</tr>
<tr>
<td>Sample Size</td>
</tr>
<tr>
<td>Detection, UV</td>
</tr>
<tr>
<td>Detection, MS</td>
</tr>
<tr>
<td>Sample Preparation</td>
</tr>
</tbody>
</table>

4. **General Comments**

Any additional identification work beyond the first pass analysis will be performed only after consultation with the PODP study coordinator.

Chromatograms of the extracts should be compared to chromatograms of the extraction blanks so that peaks due to extractables can be delineated from peaks that reflect analytical artifacts.

D. **Inductively Coupled Plasma Atomic Spectroscopy (ICPAS)**

1. **General**

Single elements (e.g. metals) in the aqueous extracts will be analyzed by Inductively Coupled Plasma Atomic Spectroscopy using appropriate methods and techniques for the determination of common analytes. Detection strategies such as optical emission and mass spectrometry shall be employed. ICP analyses should be performed consistent with USP practices.\(^4\)

\(^4\) USP 30, <730> Plasma Spectroscopy.
2. **Sample Preparation**

The resulting extracts will usually contain low-level amounts of extractables as well as the ionic constituents of the extracting media. The pH 2.5 and pH 9.5 extracts will contain large quantities of sodium and the pH 9.5 extracts will have large quantities of phosphorous. Thus these analytes cannot be determinable in these extracts.

The material extracts will need to be processed to some extent prior to testing. Aqueous samples will be acidified directly via addition of nitric acid. Place 10 mL of aqueous extract in a trace metal-free plastic vessel. Add 0.5 mL of concentrated nitric acid and mix well.

3. **Operating Conditions**

The ICP spectrometers shall be operated consistent with good laboratory practices and standard procedures in place in the participating testing facilities. The following is a list of elements that must be included in the ICP analysis: Al, As, Be, B, Cd, Cr, Co, Cu, Fe, Li, Mg, Mn, Mo, Ni, Pd, Pt, S, Sb, Se, Si, Sn, Sr, Ti, V, W, Zn, and Zr. Additional elements may be reported depending on the capabilities of the lab. The analysis conditions should be such that these elements can be measured at the appropriately low levels, typically 0.25 \(\mu \text{g/mL} \) or less in the material extracts.

4. **General Comments**

The analyses performed by the participating laboratory must meet system suitability criteria, as established in Section VIII.A

Results for the extracts should be compared the results for the extraction blanks so that extractables can be delineated from analytical artifacts and solvent impurities/components.

E. **Headspace GC/MS**

1. **General**

Direct headspace analysis of materials allows for an assessment of their volatile components, which may (or may not) be extractables or leachables. Headspace analysis augments the solvent extraction of materials (and the subsequent analysis of the extracts) because (a) the volatile entities may not be captured in the solvent extract and/or (b) the volatile entities may not persist in the analytical methods used to test the solvent extracts.

Headspace analysis couples thermal “extraction” of a material with the transfer of the “extract” to an appropriate analytical methodology. In headspace the analysis, the thermal “extraction” is accomplished by heating the material in a closed vessel. The evolved volatile entities are “captured” in the headspace gas, which is transferred, in whole or in part, to an appropriate analytical technique. Since the headspace sample is a gas, gas chromatography is the analytical method of choice. Mass spectrometry is the detection method of choice because it facilitates the identification of evolved entities.
The headspace methodology is intended to uncover volatile entities that are present in the test material; it is not intended to produce “volatiles” by causing the test material to thermally decompose. Thus the headspace “extraction” is accomplished at relatively low temperatures (e.g. 120°C or less).

2. Sample Preparation

Weigh approximately 1.0 g of sample into a 20 mL headspace autosampler vial. If necessary reduce the size of the sample (for example, by cutting) so that it fits into the vial. Seal the vial by crimping a cap onto it.

For semiquantitative evaluation and also to check for proper performance of the measurement, an 10 µL aliquot of a solution of 1,4-Dioxane in polyethylene glycol 200 (concentration 2 mg/mL) is added to each vial. This solution is prepared as follows: 20 mg of 1,4-Dioxane are dissolved in 10 mL of polyethylene glycol 200, resulting in a concentration of 2 mg/mL.

Note: A positive displacement pipetting system (e.g. Gilson Microman®) should be used for dosing this solution due to its high viscosity.

3. Operating Conditions

The operating conditions for the Headspace GC/MS are contained in Table 8.

<p>| Table 8. Operating Parameters, Headspace GC/MS Analysis for Volatiles. |
|---------------------------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Operating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Headspace Autosampler</td>
<td></td>
</tr>
<tr>
<td>Oven Temperature</td>
<td>80°C</td>
</tr>
<tr>
<td>Needle Temperature</td>
<td>120°C</td>
</tr>
<tr>
<td>Transfer Line Temperature</td>
<td>155°C</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>He at 5 psi</td>
</tr>
<tr>
<td>Equilibrium Time</td>
<td>120 min</td>
</tr>
<tr>
<td>B. GC/MS Analyzer</td>
<td></td>
</tr>
<tr>
<td>Column</td>
<td>J&W DB-WAXETR, 60 m x 0.32 mm I.D., 1 µm film</td>
</tr>
<tr>
<td>Oven Program</td>
<td>Start at 35°C, hold for 7 minutes. Ramp at 1°C/min to 40°C, hold for 15 minutes. Ramp at 10°C/min to 100°C. Ramp at 25°C/min to 240 °C, hold for 5 min.</td>
</tr>
<tr>
<td>MS Ionization Mode</td>
<td>EI+, 70 eV</td>
</tr>
<tr>
<td>MS Transfer Line Temperature</td>
<td>240°C</td>
</tr>
<tr>
<td>MS Detection Mass Range</td>
<td>25 – 200 amu</td>
</tr>
<tr>
<td>Solvent Delay</td>
<td>0 min</td>
</tr>
</tbody>
</table>
4. General Comments

The analyses performed by the participating laboratory must meet system suitability criteria, as established in Section VIII.A.

The Headspace GC/MS analysis will produce an extractables “profile” in the form of a Total Response Chromatogram (e.g. TIC for MS detection). As a first pass, identifications of individual extractables will be accomplished with manual interpretation of the Electron Ionization (EI) spectra assisted by computerized mass spectral library searching. More difficult identifications may require the collection of additional data (such as Chemical Ionization GC/MS for molecular weight confirmation and High Resolution Mass Spectrometry for elemental composition), should be discussed with the PODP study coordinator before a participating laboratory pursues these more difficult identifications.

Chromatograms of the extracts should be compared to chromatograms of the extraction blanks (Headspace vials containing no test material) so that peaks due to extractables can be delineated from peaks that reflect analytical artifacts.

The concentration of any extractables can be estimated via the use of the internal standard.

IX. DATA EVALUATION AND REPORTING

A. Qualitative Analysis

- A list of all identified entities (compounds, elements) that were not detected in the corresponding blank. This list should include the recognized compound name, CAS Registry number, chemical formula, and chemical structure.
- A list of all unidentified chromatographic peaks that were not detected in the corresponding blank at signal to noise ratios greater than 10. The participating laboratory should determine and report the analyte concentration that corresponds to this signal to noise ratio (typically defined as the limit of quantitation, LOQ).
- Copies of chromatograms, spectra, etc.
- Complete methodological information for both the extraction and analysis processes.
- The required system suitability results, which should include an assessment of detectability.
- The identification status for all compounds shall be established and reported as follows:
 - A Confirmed identification means that collaborating information has been obtained including mass spectrometric fragmentation pattern, confirmation of molecular weight (or elemental composition), match in retention time and spectrum with authentic standard.
 - A Confident identification means that sufficient data to preclude all but the most closely related structures have been obtained.
• A Tentative identification means that data have been obtained that are consistent with a class of molecule only.

• A report format will be distributed to the participating laboratories.

B. Semi-Quantitative Analysis

While it is not the primary intent of this Stage 1 Protocol to produce quantitative data, some of the test methods employed may be amenable to concentration estimation (e.g. ICP, GC with internal standards). In the case that a participating laboratory reports concentration estimates, the means by which such estimates were obtained must be indicated. Additionally, all such estimates shall be reported with a convention (e.g. significant figures) which effectively reflects the uncertainty in the determination. As was noted previously, the threshold for reporting semi-quantitative results is 10 µg/g.

X. GLOSSARY

ABBREVIATIONS

GC/FID Gas Chromatography with Flame Ionization Detector
GC/MS Gas Chromatography with Mass Spectrometric Detection
HPLC/DAD High Pressure Liquid Chromatography-Diode Array Detection
LC/MS Liquid Chromatography Mass Spectrometric Detection
ICP/AES Inductively Coupled Plasma Atomic Emission Spectroscopy
PODP Parenteral and Ophthalmic Drug Products
TIC Total Ion Chromatogram
API-ES Atmospheric Pressure Ionization - Electrospray
HS Headspace
PQRI Product Quality Research Institute
OINDP Orally Inhaled and Nasal Drug Products

XI. REFERENCES

