Process Drift in the Manufacturing of Transdermal Drug Products

Mr. Lino Tavares
Purdue Pharma L.P.
Benefits of Transdermal Delivery

- Delivers API directly into the systemic circulation avoiding hepatic first-pass effect
- Typically reduces certain types of reported adverse events
- Maintains the desired drug concentration with less variability
- Daily or weekly dose intervals provide better compliance of recommended dosing intervals
- Patch formulation convenient for patients who have difficulty swallowing oral drugs
Examples of transdermal drugs in development or marketed

Depression
- Buspirone
- Bupropion

Parkinson's
- *Ropinirole*
- Pergolide
- *Pramipexole*
- *Rotigotine*

Anxiety
- Alprazolam

Alzheimer's
- Tacrine
- Memantine
- Rivastigmine

ADHD
- Methylphenidate
- Amphetamine

Birth Control
- Estrogen/Progestin Combinations (various)

Motion Sickness
- Scopolamine

Epilepsy
- Clonazepam

Pain
- Buprenorphine (Chronic)
- Fentanyl (Chronic)
- Sufentanyl (Chronic)
- Levorphanol (chronic)
- Various NSAIDs (Arthritic)
- *Triptans (Migraine)*
- Lidocaine

Urinary Incontinence
- *Tolterodine*
- Oxybutynin

Allergies
- Azelastine

Obesity
- Phentermine
- Methamphetamine

Hypertension
- Enalapril
- Clonidine
- *Ramipril*
- Timolol

Nausea
- *Granisetron*

Male Hypogonadism/ Female Sexual Dysfunction
- Testosterone

* Under patent protection by originator
Properties of Commercialized Transdermal Products

<table>
<thead>
<tr>
<th>Drug</th>
<th>Molecular Weight</th>
<th>Daily Dose</th>
<th>Smallest Patch Size (cm²)</th>
<th>In-Vivo Permeation Rate (μg/cm²/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scopolamine</td>
<td>303.35</td>
<td>0.33 mg/day</td>
<td>2.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Nitroglycerin</td>
<td>227.09</td>
<td>1.6 mg/16 hrs.</td>
<td>5.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Clonidine</td>
<td>230.1</td>
<td>0.1 mg/day</td>
<td>3.5</td>
<td>1.19</td>
</tr>
<tr>
<td>Estradiol</td>
<td>272.38</td>
<td>0.1 mg/day</td>
<td>10.0</td>
<td>0.42</td>
</tr>
<tr>
<td>Norethindrone Acetate</td>
<td>340.45</td>
<td>0.14 mg/day</td>
<td>9.0</td>
<td>0.65</td>
</tr>
<tr>
<td>Ethinyl Estradiol</td>
<td>296.40</td>
<td>0.02 mg/day</td>
<td>20.0</td>
<td>0.042</td>
</tr>
<tr>
<td>Norelgestromin</td>
<td>327.47</td>
<td>0.15 mg/day</td>
<td>20.0</td>
<td>0.31</td>
</tr>
<tr>
<td>Nicotine</td>
<td>162.23</td>
<td>7.0 mg/day</td>
<td>7.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Testosterone</td>
<td>288.42</td>
<td>2.5 mg/day</td>
<td>7.5</td>
<td>14.0</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>336.5</td>
<td>0.6 mg/day</td>
<td>10.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>234.34</td>
<td>21.33 mg/12 hrs.</td>
<td>140.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Oxybutynin</td>
<td>357.49</td>
<td>3.9 mg/day</td>
<td>39.0</td>
<td>4.16</td>
</tr>
<tr>
<td>Methylphenidate</td>
<td>233.31</td>
<td>12.0 mg/12 hrs.</td>
<td>12.5</td>
<td>80.0</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>467.6</td>
<td>0.75-3 mg/7 days</td>
<td>25.0</td>
<td>0.007</td>
</tr>
</tbody>
</table>
Types of Transdermal Systems

• Some of the first marketed transdermal patches contained a drug *reservoir* and a control release membrane

• Most of the recently approved patches are of the *matrix* type where the drug is formulated into the adhesive and allows the skin to regulate the permeation
Types of Transdermal Systems

Figure 1
Reservoir Transdermal Patch Construction
- Backing Layer
- Drug
- Membrane
- Adhesive
- Liner

Figure 2
Drug-in-Adhesive Matrix Patch Construction
- Backing Layer
- Drug/Adhesive Matrix
- Adhesive Layer
- Liner
Process Drift

- Once a transdermal product is developed, approved and marketed special care is required to maintain its performing quality attributes
- Various factors can cause Process Drift during manufacture of raw materials and the drug product
- Extensive expertise can be required to address these types of problems
Lessons Learned

• One of the first US marketed transdermal products was Transderm Scōp® for the treatment of motion sickness

• Commercial availability of Transderm Scōp was negatively impacted by inappropriate process drift as follows:
 – Product changed from one of the innovator’s division to another
 – Sourcing of API was changed to a less costly supplier
 – Physicochemical characterization was not performed but the new API met all the approved specifications
 – After the product was on the market for a short while crystals began appearing on the drug product
 – The division selling the product did not understand the event nor did the new API supplier
 – Product was not available for commercial distribution for more than two years
Lessons Learned

• A reservoir type estrogen/progestin combination product ran into supply chain shortages in Europe
• Commercial availability was negatively impacted by inappropriate process drift as follows:
 – This patch contained a control release membrane manufactured by a melt extrusion process
 – After producing the membrane for several years some extruder parts suffered excessive wear but this was considered normal
 – The membrane’s permeation characteristics were altered causing the routine dissolution test to fail specifications
 – A comprehensive design of experiments was required to identify the root cause and correct the problem
Lessons Learned

• A recall of leaky reservoir type fentanyl patches was recently reported
• Safety concerns of a CII opioid overdose was cause for immediate action
• The most likely causes for this product defect were process drift or operator error
Lesson Learned

• Neupro (Rotigotine Transdermal System) withdrawn from US market due to crystallization observed on the surface of the patch
• FDA requested reformulation of the drug product
• Process drift or overlooked material incompatibility the likely cause
Processing Parameters and Raw Materials Variation

• Processing parameters are established and validated prior to FDA approval and product launch

• Adherence to validated parameters is crucial to ensure product performance and regulatory compliance

• Sourcing of API and other excipients from alternate vendors need to be fully characterized before they are used in commercial batches
Transdermal Manufacturing Steps

• Most recently developed transdermal products are classified as matrix patches
• The manufacturing steps to make such a patch typically consist of the following:
 – Dissolution of API and all excipients into a homogeneous solution
 – Coating of the mixture, removal of solvents, monomers and polymerization of matrix layer
 – Slitting of the matrix layer into smaller rolls
 – Patch fabrication, pouching and secondary packaging
Critical Processing Parameters

• **Solutions**
 - Order of addition, mixing speeds, times and conditions (jacketed/open/closed vessel)

• **Coating/Drying**
 - Machine speed, temperature and air flow rate

• **Slitting**
 - Machine speed, roll width and tension

• **Fabrication/Pouching**
 - Machine speed, temperature, sealing pressure and appropriate function of all detection devices

• **Secondary Packaging**
 - Similar to oral dosage forms
Quality by Design

• Better understanding of the formulation (i.e. functionality of excipients and stability of the formulation)
• Better understanding of the manufacturing process
• Better control of the critical quality attributes
• Better plan to deal with process drift
Quality by Design Considerations

• What is known
• What is not yet known
• Formulation design space development
• Process design space development
• Control strategy development
Formulation Variables

INPUT

1. Adhesive composition
2. API% in matrix (drug load)
3. Excipients % in matrix
4. Drug solubility in matrix
5. Coat weight (drug load)
6. Drug matrix size (drug load)
7. Adhesiveness provided by matrix

UNCONTROLLED INPUT

1. Human cadaver skin variation
2. Franz cell set up variation
3. Analytical errors
4. Operator/equipment for mixing and coating

CONTINUOUS FACTORS

1. Temperature
2. Humidity

OUTPUT

1. Toxicological profile
2. Preclinical skin irritation profile
3. Cadaver skin flux rate
4. In vitro dissolution stability
5. Adhesive strength stability
6. Release strength stability

Transdermal Formulation Development
Process Variables

INPUT

Discrete factors:
1. Operator/machine
2. Analytical errors
3. Air quality

Continuous factors:
1. Humidity
2. Sedimentation rate of the slurry
3. Air flow rate drift

OUTPUT

1. Coat weight uniformity
2. API content uniformity
3. Residual solvent content
4. Degradation product
5. Dissolution rate profile
6. Appearance

UNCONTROLLED FACTORS
coating process
Develop Risk Management Strategy

• Follow the priority list to tackle each risk
• Develop risk management strategy accordingly
Outcome

• The critical attributes are identified.
• The potential risks in the formulation and in the manufacturing process are identified.
• The control strategies will be developed
• Less surprise in process drift and better handling of its occurrence
Process Analytical Technologies

• Roles in dealing with process drift
 – Real time detection
 – Real time action

• Available technologies: Infrared, Near-Infrared, Raman Spectroscopy, UV-VIS Spectroscopy
Conclusions

• Trivial process changes can become big problems in the drug product production
• Experience and knowledge are essential to solve process drift issues
• Quality by Design and Process Analytical Technology can help to better understand materials compatibility and control the process drift
Acknowledgements

- Glenn Van Buskirk
- Shu-Lun Chang Weinheimer
- Ihor Shevchuk