Practical applications to evaluate topical drug products in patients

March 13, 2013

N. Wagner
Introduction

• Initially, PK in dermatology focused mainly on systemic exposure and Skin PK were investigated using non-clinical models (i.e. *in vitro*: human skin model, *in vivo*: minipig model)

• Recently, skin PK became a key element of drug development at Galderma R&D

• The objective of this presentation is to share new results on Skin PK and open the discussion:
 – On the future use of these approaches
 – Improvement on methodological aspects
Presentation Plan

1. Pathology effect
 - Psoriatic skin versus healthy skin
2. Formulation effect
3. Dose effect
4. Time effect
Skin drug distribution and pathology effect in drug penetration – Example #1

• Two clinical studies on healthy volunteers and subjects with psoriasis

 – **Study #1**: Evaluation of the cumulative irritation potential of CD cream at 3 concentrations (1%, 3% and 5%)
 • 27 Healthy male volunteers
 • Topical treatment (QD) during 3 weeks
 • Non occlusive conditions : 2 mg/cm²

 – **Study #2**: Evaluation of local tolerance and systemic safety of CD cream at different concentrations (1% and 5%)
 • 8 subjects with *psoriasis vulgaris*
 • Topical treatment (QD) during 3 weeks
 • Non occlusive conditions : 16 mg/cm²

• Cutaneous PK

 – Tape-stripping 24 hours after the last application
 • 20 strips /zone for healthy volunteers
 • 10 strips /zone for psoriatic subjects

 – Skin Punch Biopsy after tape stripping
 • One 3-mm punch biopsy
Healthy volunteers vs subjects with psoriasis

- Higher quantity of drug in SC of psoriatic skin in comparison to healthy skin
- Similar to lower quantity of the drug in Epidermis/dermis despite higher applied quantity of drug (2 mg/cm² vs 16 mg/cm²)
Skin drug distribution and pathology effect in drug penetration

Normal skin, scan magnification x20
See the basket woven pattern of the SC

Psoriatic skin, scan magnification x20
Hyperkeratosis (increased thickness) with very compact pattern Parakeratosis (retention of nuclei in SC)

Normal skin versus psoriatic skin:
Critical role of the stratum corneum
Barrier or Reservoir effect of SC?
Skin drug distribution and pathology effect in drug penetration – Example # 2

- Open-Flow Microperfusion (OFM):
Open flow microperfusion (OFM) Study design

- Study population
 - 12 patients (4 in Part I and 8 in Part II)
 - Males or females,
 - 18 to 50 years old,
 - With a diagnosis of stable plaque type of psoriasis having at least two psoriatic plaques on the upper extremities or proximal lower extremities
Open flow microperfusion (OFM) Study design

• Phase I, exploratory study, open label, multiple dose

• Monocenter in Austria (Graz Medical University)

• Dermoval Cream® (Clobetasol 17-propionate) and its vehicle ➔ 14 days on lesional and non-lesional skin sites

➢ 12 x OFM sampling per patient

➢ 2 lesions (6 OFM sampling) and 2 unaffected skin areas (6 OFM sampling) treated per patient
Study objectives: PK/PD assessment

- To investigate the dermal PK profile of **Clobetasol propionate-17** (CP-17)

- To investigate the PD of CP-17 to modulate levels of **skin-produced cytokines:**
 - INF-γ, IL-1β, IL-6, IL-8, IL-12, IL-15, IL-17, IP-10, TNF-α, VEGF

- on both lesional and non-lesional skin of psoriatic patients

- At two periods: Day 1 and Day 14
CP-17 individual profiles in skin (n=8)

- **Non-Lesional skin**
 - First application: Quantifiable subjects: 63%; % quantifiable data: 29%

- **Lesional skin**
 - First application: Quantifiable subjects: 63%; % quantifiable data: 20%

- **14th application**
 - Quantifiable subjects: 100%; % quantifiable data: 70%
CP-17 mean Profiles

T_{lag}: 5.2h

T_{lag}: 9.5 h

Treated Non-Lesional V2
Treated Non-Lesional V14
Treated Lesional V2
Treated Lesional V14

Non-Lesional skin
Lesional skin
Skin drug distribution and pathology effect in drug penetration

Normal skin, scan magnification x20
See the basket woven pattern of the SC

Psoriatic skin, scan magnification x20
Hyperkeratosis (increased thickness) with very compact pattern Parakeratosis (retention of nuclei in SC)

Normal skin versus psoriatic skin:
significant differences were identified on lag time

Decrease of drug penetration rate?
Interleukin 8 (IL-8) Levels

Significant Difference on IL-8 levels after CP17 treatment
Same treatment effect in Lesional AND non Lesional skin
Significant Difference on IP-10 levels after CP17 treatment
Same treatment effect in Lesional AND non Lesional skin
IP-10 levels are significantly different in Psoriatic skin compared to non lesional skin.

IP-10: potential pathology marker?
Presentation Plan

1. Pathology effect
 - Psoriatic skin versus healthy skin

2. Formulation effect

3. Dose effect

4. Time effect
Formulations comparison

• Clinical PK study in healthy volunteers to evaluate systemic exposure at steady state
 – 10 subjects/group, once daily application for 29 days, Plasma samples collected at days 1, 5, 15, 29
 – In addition, skin sampling for formulation comparison were performed on dedicated mini-zones after 5 days of treatment: tape stripping + skin punch biopsies

• Tested formulations:
 – Gel formulation: early formulation tested in the proof of efficacy study ➔ clinical efficacy demonstrated in patients with acne vulgaris
 – Creams A and B formulations: New formulations with more appropriate cosmetic properties
50 µg/g formulations
Skin penetration

Significant different skin penetration of NCE when formulated in Cream A in comparison to:

- Gel/Cream A ratio: 3.0
 IC 90% [2.0; 4.5]
- Cream B/A ratio: 2.4
 C90% [1.6; 3.7]

No statistical differences on skin penetration of NCE when formulated in Cream B:

- Gel/Cream B ratio: 1.2
 IC 90% [0.8; 1.2]

Formulation effect on NCE skin penetration: significantly lower penetration with cream A
50 µg/g formulations
Efficacy on acne

- Gel and Cream B formulations demonstrated clinical efficacy on acne
 - Comparison versus vehicle (Intra individual comparison)

Cream A has not demonstrated a clinical efficacy in acne ➞ may be due to the lower skin penetration?
Conclusions

• Skin PK assessment (tape stripping and skin punch biopsies) allowed formulations comparison

• Skin PK results were in accordance with clinical efficacy results
 – Skin PK assessment after 5 days of treatment
 – Clinical efficacy after 1 month of treatment
Presentation Plan

1. Pathology effect
 - Psoriatic skin versus healthy skin

2. Formulation effect

3. Dose effect

4. Time effect
Dose effect

• Dose selection ➔ Critical step during drug development
 – Need for data for optimal dose selection ➔ efficacy vs safety
 – Local tolerance
 – Avoid over-exposure to drug ➔ better safety margin
 – May have an impact on formulation cost

• Phase 2 data are currently used for dose selection

• Skin PK/PD data on dose effect should be available for dose selection
Cutaneous Pharmacokinetics in healthy volunteers

Dose proportionality demonstrated in Epidermis /Dermis (statistically not rejected)

Saturation of *stratum corneum*?
Patient with psoriasis (N=3/4)

- Over proportionality in *stratum corneum* (High/ Low dose ratio: 12)
- Dose proportionality (trend) in Epidermis + Dermis
Cutaneous Pharmacokinetics in healthy volunteers

Dose proportionality (High/Low dose ratio)
- Epidermis + dermis ratio: 2
 IC 90% [1.3; 2.5]
- Stratum corneum ratio: 7
 IC 90% [4.0; 12.8]
- Total skin ratio: 4
 IC90% [3.2; 7.5]

Dose proportionality statistically demonstrated when using total penetrated drug quantity in the skin
Dose proportionality

- Same formulation ranking observed whatever the skin compartments considered (SC or viable epidermis / dermis)

- **But** Dose proportionality not consistent across different studies:

<table>
<thead>
<tr>
<th>Skin type</th>
<th>Stratum corneum</th>
<th>Epidermis + Dermis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>(saturation??)</td>
<td></td>
</tr>
<tr>
<td>Psoriatic</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>(Over proportionality)</td>
<td></td>
</tr>
<tr>
<td>Healthy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(Over proportionality)</td>
<td>(under proportionality)</td>
</tr>
</tbody>
</table>

Pending question: is the “dose proportionality” dependent to compound, formulation and/or to skin compartments?
Presentation Plan

1. Pathology effect
 - Psoriatic skin versus healthy skin

2. Formulation effect

3. Dose effect

4. Time effect
Formulation comparison in healthy volunteers: Gel versus Lotion

DPK method

• Study objective:
 – Comparison of the drug penetration in stratum corneum when using two different formulations at the same strength (Gel and Lotion)

• Design/study chronology
 – 2 pilot studies were conducted on limited number of subjects (single and repeated dose)
 • Study #1: Single Dose
 • Study #2: Repeated Dose
DPK Methodology
Study #1 : Single dose

- Application (single dose)
 - 2 mg/cm²
 - Massage

- Mini-zones covered with non-occlusive dressing
 - 4 application times tested for each formulation (2, 4, 8, 12 hours)

- Stripping
 - Template to avoid edge effect (in order to reduce variability)
 - Tape stripping : each tape strip analyzed individually with an appropriate LOQ
4 subjects (4 application areas per subject):

- Low inter and intra individual variability CV < 50 % for Lotion and Gel
- Formulation effect noticeable from the individual profile
Study #1: Single dose DPK

Cumulated Quantity of NCE delivered by the Lotion in the *stratum corneum* was significantly lower compared to the Gel.

No effect of application time: plateau reached after only 2 hours.

Bioequivalence acceptance criteria CI 90%: [0.80; 1.25]
Study #1: Single dose – key results

- NCE penetration in *stratum corneum* approximately 2-fold higher with the Gel compared to the Lotion
 - BUT difference mainly observed in the first 10 tape strips
- plateau reached after only 2 hours post-dose
 - NCE seems to move rapidly into the outermost layers of *Stratum corneum* after the application

Hypothesis

- Formulations create a NCE “depot” in the upper SC
- Reaplications should solubilise this NCE “depot” present in the upper SC

Due to the difference in formulation composition, NCE concentrations may not reach steady-state after one single application ➔ Repeated dosing will be more representative of the clinical intended use

Second Pilot study (study #2) with multiple dose application
Study #2:
Mean quantity of NCE versus the strip number
Study #2: Multiple dose DPK

Gel: Steady state achievement at day 5,

Lotion: No accumulation in the *stratum corneum*

*At steady state, the cumulated Quantity of NCE delivered by the Lotion in the *stratum corneum* was significantly different compared to the Gel (5-fold lower)*

<table>
<thead>
<tr>
<th>Sampling time</th>
<th>N</th>
<th>Ratio (Lotion/Gel)</th>
<th>Geometric mean</th>
<th>90% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>4</td>
<td>0.51</td>
<td>0.37</td>
<td>0.71</td>
</tr>
<tr>
<td>D3</td>
<td>4</td>
<td>0.30</td>
<td>0.22</td>
<td>0.42</td>
</tr>
<tr>
<td>D5</td>
<td>4</td>
<td>0.21</td>
<td>0.17</td>
<td>0.25</td>
</tr>
<tr>
<td>D7</td>
<td>4</td>
<td>0.20</td>
<td>0.12</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Bioequivalence acceptance criteria CI 90%: [0.80; 1.25]
DPK studies – Single vs. Multiple

<table>
<thead>
<tr>
<th></th>
<th>Single dose DPK study Study #1</th>
<th>Repeated dose DPK study Study #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study year</td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>Number of applications</td>
<td>1</td>
<td>1, 3, 5 and 7</td>
</tr>
<tr>
<td>DPK assessment</td>
<td>2, 4, 8 and 12 hrs after application</td>
<td>(2 hrs after application)</td>
</tr>
</tbody>
</table>

Low and similar Inter- study variability !!
CONCLUSION
Skin PK techniques

- Depending on the skin compartment different phenomenon may be observed. Then, different technique(s) should be used to characterize formulations:
 - **Tape stripping**: Main of the applied drug being located in the SC, useful tool for
 - Formulation comparison, Dose effect (in some cases)
 - However, SC is not always representative of the total skin penetration
 - **Skin punch biopsy**
 - Proof of skin exposure in viable skin
 - Should be combined with PD assessment for better understanding of drug effect
 - Must be combined with tape stripping to assess the global skin distribution (SC effect) and avoid sampling contamination
 - **Micro-dialysis /OFM**
 - Gold standard to investigate skin PK-PD
 - However, technical complexity, cost may limit the use of these approach
Perspectives

• Efforts have to be made for better understanding of:
 – Pathology impact on penetration
 – Interaction between Formulation / Pathology
 – Techniques reliability

• Skin PK-PD investigation should be assessed in early clinical stages:
 – For an optimal formulation and dose selection (efficacy/safety)
 – To consolidate “proof of concept” results

• Take-home message: Combined skin PK sampling methods are necessary to understand the skin distribution of a given NCE