How Research Can Help Us Rethink Lifecycle Management and Post-Approval Changes: Oral Products

James E. Polli
jpolli@rx.umaryland.edu
September 17, 2014
Perspective

• The societal promotion of generic products has contributed to the interest in more definitive and scientific public standards for “sameness” in the bioequivalence area.

• However, “innovator” products are frequently evaluated for equivalent quality and/or bioequivalence, in the pre- and post-approval time frames.
Topics

• “Switching” and the Easter Bunny
• When are in vitro studies (i.e. equivalent quality) better than in vivo BE?
• ER, design space, and scale-up
 – MR of anti-epileptic drugs (AEDs)
• Current issues with in vitro dissolution and Need for a second in vitro dissolution method
• IVIVC, IVIVR, and biopharmaceutic risk
• Excipient material properties that impact performance
Clinical sensitivity to switching

Tablet quality

↓

Quality control (QC) specs (in vitro)

↓

Every manufactured batch

Safety and efficacy standard

↓

Bioequivalence window (in vivo)

↓

NDAs, sNDA, 505(b)(2)’s, ANDAs, and major post-approval changes
“Switching” and the Easter Bunny

• Brand to generic (and generic to brand)
• Generic to generic
• Old product to new product after a SUPAC change?
• Initial dosing of a drug-naïve patient of brand formulation (of a non-NTI, not precisely titrated drug) that is not phase 3 clinical trial material?
Topics

• “Switching” and the Easter Bunny
• When are in vitro studies (i.e. equivalent quality) better than in vivo BE?
• ER, design space, and scale-up
 – MR of anti-epileptic drugs (AEDs)
• Current issues with in vitro dissolution and Need for a second in vitro dissolution method
• IVIVC, IVIVR, and biopharmaceutic risk
• Excipient material properties that impact performance
Ongoing product quality and Importance of the bioequivalence standard

Concordance and Discordance between Vitro and In Vivo Results

- Truly not BE
 - Both correctly conclude not BE
 - In vitro wrong
 - In vivo wrong

- Truly BE
 - Both correctly conclude BE
 - Both wrong

Oval – in vitro concludes BE
Diamond – in vivo concludes BE
Yes, in vitro are studies sometimes better than conventional human BE studies in assessing equivalence. Why?

• 1. Reduce costs
 – Reduce the cost of “no brainers”
 – Reduce the cost of type II errors

• 2. More directly assess product performance
 – In vitro studies allow for focus on product performance, which is dissolution and absorption.
 – Conventional BE testing suffers from complications (e.g. HVD) due to its indirect approach.

• 3. Offer benefits in terms of ethical considerations
 – Better embraces “No unnecessary human testing should be performed”
 – Can result in faster development

• 4. Potentially better gain physician confidence and understanding
Can result in faster development

*Generally 3-6 clinical bioequivalence tests are conducted in a NDA

Ref: Ajaz Hussain, FDA’s ACPS Meeting, 1997
When are in vitro studies better?

- Class I with rapid dissolution
- Class III with very rapid dissolution
- HVD with rapid dissolution and that are not bio(equivalence)problem drugs
Topics

• “Switching” and the Easter Bunny
• When are in vitro studies (i.e. equivalent quality) better than in vivo BE?
• ER, design space, and scale-up
 – MR of anti-epileptic drugs (AEDs)
• Current issues with in vitro dissolution and Need for a second in vitro dissolution method
• IVIVC, IVIVR, and biopharmaceutic risk
• Excipient material properties that impact performance
Lack of BE

Graph showing the mean plasma concentration of bupropion over time for Wellbutrin XL, 300 mg and Budeprion XL, 300 mg.
Factors impacting ER performance

• Drug substance and dose(s)
• Formulation and mechanism of release
• In vivo environment

• In vitro predictive tools
 – Methods
 – Specification setting approaches
Design space

- Because design space is potentially scale- and equipment-dependent, the design space determined at the laboratory scale may not be relevant to the process at the commercial scale.

MR of Anti-epileptic Drugs (AEDs)

- Carbatrol and Equetro (carbamazepine ER cap)
- Tegretol XR (carbamazepine ER tab)
- Depakote ER (divalproex sodium ER tab)
- Keppra XR (levetiracetam ER tab)
- Lamictal (lamotrigine ER tab)
- Oxtellar XR (oxcarbazepine ER tab)
- Trokendi XR and Qudexy XR (topiramate ER cap)
- Qsymia (phenterimine/topiramate ER cap)
- Dilantin (extended phenytoin sodium)

IVIVCs from 2009-2012

- 32 NDAs vs 4 INDs
- n=25 oral solid dosage forms

N=36
Topics

- “Switching” and the Easter Bunny
- When are in vitro studies (i.e. equivalent quality) better than in vivo BE?
- ER, design space, and scale-up
 - MR of anti-epileptic drugs (AEDs)
- Current issues with in vitro dissolution and Need for a second in vitro dissolution method
- IVIVC, IVIVR, and biopharmaceutic risk
- Excipient material properties that impact performance
Two of the Most Common Complaints about In Vitro Dissolution

• Too sensitive (i.e. over discrimination)
• Not sensitive enough (i.e. not discriminating enough)

• Opportunities
 – Regulatory relief
 – Methods development/validation/standardization of more challenging dissolution problems (e.g. BCS class 2)
Complications

• Attaining complete dissolution and sink conditions
 – Enhanced drug solubility (e.g. via additional surfactant) tends to reduce dissolution test sensitivity.

• Same EVERYTHING across dose strengths
 – Historical tendency to prefer the same test methods and same specs, even though different doses can result in a fundamental change in the dissolution problem.

• A higher dose may dissolve slower or to a lesser extent, than lower dose.
Roles of In Vitro Dissolution

• Product development tool
• QC test
• Clinically relevant assessment tool [a/k/a in vivo performance test]
 – Meaning?
• A measure of in vivo dissolution
 – As assessed by deconvolution of PK profile when absorption is dissolution-limited?
Need for a Second In Vitro Dissolution Method

• QC test
 – Use: current application in batch-to-batch consistency

• Clinically relevant assessment tool [a/k/a in vivo performance test]
 – Meaning?
 – Use: Product development tool; SUPAC-type situations
Meaning of “In Vivo Performance”

- In vivo dissolution (profile)
- In vivo absorption (profile)
- In vivo pharmacokinetic profile
- Sensitive to efficacy or safety

- Sure, all related, but lack of clarity is a barrier.
- Do we want in vitro dissolution to predict first-pass metabolism?
- We have to be careful about what we expect of in vitro dissolution. Lack of clarity detracts from reliable utility of in vitro dissolution.
- IVIVR – in vitro dissolution – in vivo absorption relationship
 - Absorption = dissolution + permeation
Beyond In Vitro Dissolution Science: Status Quo and the Confidence Game

• Organizations will often not pursue approaches that lack utility in drug development or lack high regulatory certainty.

• Status quo
 – Stakeholder know current strength/limitations of in vitro dissolution
 – Budget
 • No requirement for “biostudies with several formulations”

• Uncertain elements
 – Budget
 – Acceptable role of modeling and simulation
Novel In Vitro Dissolution Methods

• Two major elements
 – Apparatus and operating conditions
 – Media

• Apparati
 – Compendial
 – Two or more “lumen” compartments (e.g. stomach and duodenum per ASD model)
 – Systems with “absorption compartment” (e.g. biphasic systems to mimic absorption during dissolution for low solubility drugs to avoid “too much” surfactant)
Continuous dissolution/Caco-2 system

- Mark J. Ginski, Rajneesh Taneja, and James E. Polli. Prediction of Dissolution-Absorption Relationships from a Continuous Dissolution/Caco-2 System. AAPS PharmSci 1999; 1 (3) article 3

Topics

• “Switching” and the Easter Bunny
• When are in vitro studies (i.e. equivalent quality) better than in vivo BE?
• ER, design space, and scale-up
 – MR of anti-epileptic drugs (AEDs)
• Current issues with in vitro dissolution and Need for a second in vitro dissolution method
• IVIVC, IVIVR, and biopharmaceutic risk
• Excipient material properties that impact performance
Biopharmaceutic Risk

• Is an IVIVC/IVIVR possible or even likely for a BCS 1 IR tablet?
• ... a BCS 2 IR tablet?
• ... a BCS 3 IR tablet?
• ... a BCS 4 IR tablet?

• Is it possible to understand how dissolution contributes to the absorption kinetics?
Biopharmaceutic Risk

• What type of drug product would you be most comfortable developing if you could only rely on in vitro dissolution as the key pharmacokinetic/biopharmaceutic test (i.e. not rely on in vivo pharmacokinetic testing)?
Biopharmaceutic Risk

• For a SUPAC change, a IR tablet of a BCS Class 2 drug demonstrates rapid in vitro dissolution (including being in spec). Is a biowaiver possible?

• For a SUPAC change, a ER tablet of a BCS Class 2 drug demonstrates in vitro dissolution in spec. Is a biowaiver possible?
Biopharmaceutic Risk

• For an IR product, in what way is it desirable that in vivo dissolution be the rate-limiting step for drug absorption?
• For an IR product, is there any advantage for in vivo dissolution to not be the rate-limiting step for drug absorption?
• If in vivo dissolution is not-limiting for drug absorption, and in vitro dissolution exactly measures in vivo dissolution, what would be the relationship between dissolution and absorption?
Biopharmaceutic Risk

32 NDAs vs 4 INDs
n=25 oral solid dosage forms

Categories of IVIVC/IVIVR

- Convolution (FDA Level A) AAA
- Deconvolution AA
- Deconvolution (but only linear) A
 - USP Level A
- Summary parameters B
- Point estimates C
- Rank order D

Topics

- “Switching” and the Easter Bunny
- When are in vitro studies (i.e. equivalent quality) better than in vivo BE?
- ER, design space, and scale-up
 - MR of anti-epileptic drugs (AEDs)
- Current issues with in vitro dissolution and Need for a second in vitro dissolution method
- IVIVC, IVIVR, and biopharmaceutic risk
- Excipient material properties that impact performance
Excipient material properties that impact performance

• Excipients often
 – Multi-source
 – Critical to product performance

• Process properties more studies than material properties
 – Assumes that excipient composition not critical and covered by CoA and NF, particularly since not the API