Risk-Based Cleanroom and Environmental Controls for Terminal Sterilization Operations

Ed Tidswell (Baxter Healthcare)
Sterile Manufacturing - Product Quality Risks From Microbial Hazards
- Recalls, Warning Letters
- Themes and Conclusions

Terminal Sterilized Products - Product Quality Risks From Microbial Hazards
- Cleanroom Guidance
- Quality System Improvements – Risk-Based Controls

A New Tool – Quantitative Risk Assessments
- What is Quantitative Risk Assessment

A New Tool - Real Time Risk Assessment (RTRA)
- Relevant 483s
- What is RTRA
Sterile Manufacturing - Product Quality Risks From Microbial Hazards

- Recalls, Warning Letters
- Themes and Conclusions
Sterile Manufacturing - Product Quality Risks From Microbial Hazards

Microbiologically-Related Product Recalls 2004-2011

Lack of Sterility Assurance 79%
Packaging 65%

- Undefined/GMP 13%
- Microbial contamination 11%
- Contaminated 6%
- Diagnostic Kit Error 6%
- AET 1%
- BET 1%
- Failed Test 4%
- Manufacturing 14%
Risk-Based Cleanroom and Environmental Controls
Terminal Sterilization Operations

Sterile Manufacturing - Product Quality Risks From Microbial Hazards

Microbiologically-Related Warning Letters 2001-2011

- Test Controls: 12%
- Sampling: 20%
- Pre-sterilization filtration: 23%
- Out of Limits Investigation: 21%
Recalls & Warning Letters - Themes & Conclusions

• Lack of sterility assurance continues to be a cause of product recalls

• Packaging, manufacturing, microbial contamination all major reasons for product recalls

• Significant numbers of warning letters linked to microbial control (79 companies, 11 observations)

• Sampling, OOL investigations, pre-sterilization filtration are all major causes of microbial-related warning letters
Terminal Sterilized Products - Product Quality Risks From Microbial Hazards

- *Cleanroom Guidance*
- *Quality System Improvements – Risk-Based Controls*
Guidance Recommendations For Terminally Sterilized Product Cleanrooms

<table>
<thead>
<tr>
<th>Reference</th>
<th>Cleanroom Standards & Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU GMP, Annex 1</td>
<td>At least a grade C environment
Where the product is at unusual risk of contamination …. filling should be done in a grade A zone with at least a grade C background</td>
</tr>
<tr>
<td>FDA, Guidance for Industry
Sterile Drug Products Produced by Aseptic Processing</td>
<td>Terminal sterilization usually involves filling and sealing product containers under high-quality environmental conditions. Products are filled and sealed in this type of environment to minimize the microbial and particulate content of the in-process product and to help ensure that the subsequent sterilization process is successful.</td>
</tr>
<tr>
<td>United States Pharmacopoeia 35 <1116></td>
<td>Perform a risk analysis to determine the appropriate environmental control classification. Microbial monitoring should reflect the microbiological control requirements of manufacturing and processing activities.</td>
</tr>
</tbody>
</table>
Parametric Release Guidance – Environmental Controls

FDA Guidance for Industry³

‘Demonstrated reliability of the production terminal sterilization cycle, *microbiological control* and monitoring and control of production cycle parameters…’
Risk-Based Cleanroom and Environmental Controls
Terminal Sterilization Operations

Risk-Based Lifecycle Management (RBLCM)

- Advance benefit to patients by reducing product risk
- Proactively manage supply continuity risk and residual risk to patients in manufacturing processes
- Ensure that residual risk reduction is a never-ending process

Global Product Ownership

- Clear overall accountability for health of products throughout their lifecycles
- Continuous improvement and residual risk reduction
- Closed loop analysis to ensure continuous differentiation and value capture of product portfolios

Quality Quotient

- Measure state of current quality system deployment and linkages
- Measure the continuous improvement of the systems we use
- Develop and refine enabling tools for effective and sustainable execution
Risk-Based Cleanroom and Environmental Controls
Terminal Sterilization Operations

Essential Requirements

Process Map

‘Latent’ Risk Assessments

PFMEA
- Microbial ingress
- Microbial proliferation
- BET

Quantitative Risk Assessment

Touch Point Analysis

Traffic Flow Analysis

Process Control Plan
- Defines classification
- Local controls
- Monitoring (where, when, why, technology)

Real Time Risk Assessment

EMPQ

EM Program

Data
A New Tool – Quantitative Risk Assessments

- What is Quantitative Risk Assessment?
- Microbial Ingress Technology – Qualification & Validation
- Microbial Ingress Technology – Mapping Microbial Contamination Risks
What is Quantitative Risk Assessment?

• Design, process and operationally focused tool
• Structured, objective, systematic quantification of microbiological contamination risks
• Uses well defined and qualified microbial ingress assessment technology
• Models worst case contamination rates – design space
• Design space data applied to real world manufacturing variables to determine contamination risks
• Microbial contamination risk data used to optimize environmental and process controls
Microbial Ingress Technology – Qualification & Validation

- Microbial ingress test chamber
- Optimized aerosolization
- Fully qualified

Computational Fluid Dynamics

Witness Plates – dispersal and agglomeration

Plates & Active Air Mapping
Microbial Ingress Technology – Maps Microbial Contamination Risks

- Microbial ingress test chamber
- Loaded with media filled containers
- Microbial aerosol challenge
- Variety of different conditions
- Maps the design space for risk of microbial contamination

Probability of Ingress

- Apply manufacturing variable
- Fill speed, container apertures
- Worst case environmental conditions
- Generates quantitative contamination rate – use to optimize controls

Time of Exposure

Magnitude of Challenge (cfu)
A New Tool - Real Time Risk Assessment (RTRA)

- Relevant 483s
- What is RTRA
Terminal Sterilized Products - Product Quality Risks From Microbial Hazards

FDA 483s
Employee practices do not align with written procedures and are not assessed for their impact upon manufacturing efficiency and/or product quality. Examples include:

- No procedure or means of tracking employees’ practice of storing plastic films for use in the fabrication of 500 ml and 1000 ml bags

Human behaviors – inherent human characteristic
Documentation – absent or lagging change
Oversight – expertise, knowledge, communication
Culture – compliant, competent in microbial risk assessment?
FDA 483s
Employee practices do not align with written procedures and are not assessed for their impact upon manufacturing efficiency and/or product quality. Examples include:

No written procedures for employees’ practice of using ZZZ and YYY at multiple points on and in the machines that place 500 ml and 1000 ml bags into overwraps to prevent jams and possible damage to overwrap pouches and/or bags

- Human behaviors – inherent human characteristic
- Documentation – absent or lagging change
- Oversight – expertise, knowledge, communication
- Culture – compliant, competent in microbial risk assessment?
FDA 483s
Employees engaged in the manufacture and processing of a drug product lack the training required to perform their assigned functions. For example:

Filling nozzle on the filler was observed to be misaligned resulting in product solution spilling over the edge of the respective vials being filled. This in turn resulted in product solution pooling in a catch basin beneath the vial conveyor system and forming puddles on the floor and an indentation in a wall as the conveyor system transported spilled product solution from the filling machine to the capping machine.

- Equipment design – human factors, aging infrastructure
- Equipment adjustment – inappropriate, regularity, expertise and know-how
- Facility – aging infrastructure, maintenance
- Environment – risk mitigation activities absent
- Culture – compliant, competent in microbial risk assessment?
Terminal Sterilized Products - Product Quality Risks From Microbial Hazards

FDA 483s
Buildings used in the manufacturing and processing of a drug product are not maintained in a good state of repair, specifically:

Caulking material around multiple ceiling tiles was observed to be cracking and degrading in the Filling Area where 500 ml and 1000 ml bags are filed and sealed. At least one ceiling tile was observed to have displaced slightly upwards into the interstitial space above.

Facility – aging infrastructure
Facility – appropriate modification/repair, expertise, risk management
Facility – conformance to standards
Environment – risk mitigation activities absent
Culture – compliant, competent in microbial risk assessment?
Terminal Sterilized Products - Product Quality Risks From Microbial Hazards

FDA 483s
Buildings used in the manufacturing and processing of a drug product are not maintained in a good state of repair, specifically:

A brick, metal beams and large metal cogs were among the objects used to weigh down ceiling tiles as observed from the interstitial space directly above the filling areas.

Facility – aging infrastructure
Facility – appropriate modification/repair, expertise, risk management
Facility – conformance to standards
Culture – compliant, competent in microbial risk assessment?
Terminal Sterilized Products - Product Quality Risks From Microbial Hazards

FDA 483s
Equipment and utensils are not cleaned and maintained at appropriate intervals to prevent contamination that would alter the safety, identity, strength, quality or purity of the drug product. For example:

Inspection revealed numerous HEPA filters, HEPA filter supporting grid work, HEPA filter screens and HEPA filter screen tracks possessed varying amounts of discolored areas, chipping paint, multicolored coalescing droplet, and clumps of dark material.

Facility – aging infrastructure
Facility – regular assessment, repair, expertise, risk management
Facility – conformance to standards
Culture – compliant, competent in microbial risk assessment?
Key Compliance Root Cause Themes

- **Employee behaviors** – inherent human characteristic
- **Documentation** – absent or lagging change or behavior
- **Oversight** – expertise, knowledge, communication
- **Culture** – compliant, competent in microbial risk assessment?
- **Equipment design** – human factors
- **Equipment adjustment** – appropriate, regularity, expertise and know-how
- **Environment** – risk mitigation activities absent
- **Facility/equipment** – aging infrastructure
- **Facility** – modification/repair, conformance to standards, risk management

RTRA

Oversight
Know-how
Risk assessment

Facility
Equipment
Process

9/19/2014
Baxter – Public Information

23
What is RTRA?

• Behavior, operationally focused tool
• Structured, objective assessment of cleanroom microbiological risks
• Regularly executed during shifts (in real-time)
• Performed and overseen by Microbiologists
• Identified risks are mitigated as far as possible at time of discovery (real-time)
• Risks are reported to Manufacturing, Quality, Engineering management
• Focus alters with improved performance - *evergreen*
• Mean of continuous improvement on cGMP
• Can Incorporate real time environmental monitoring (IMD-A Technology)
Real Time Environmental Monitoring With IMD Technology

- Standardized measurement using IMD-A technology
- Immediate assessment of cleanroom air bacteria and mold levels
- Instant data prevents product or compliance risks
- Continuous improvement
Road Map for Developing / Sustaining RTRA

- EMPQ (Environmental Monitoring Performance Qualification)
- Risk Assessment
- Traffic Flow
- Worst Case Locations

Review Data

Brainstorming

Process Review

Involve SMEs

Implement RTRA per Quality system

Perform RTRA on a regular basis
- Microbiologists perform
- Report results regularly

Continuous Improvement
- Corrective Actions
- Preventative Actions
- Knowledge Transfer

9/19/2014
Microbiological Process Review

Personnel Traffic Flow Chart

Process Contamination Risk Assessment

Worst Case Monitoring Locations
Who is to be involved in development?

Microbiologists/Quality

Engineers

Manufacturing
Developing RTRA - Brainstorm - Results

- Mitigate moisture in clean room (reduce microbial proliferation)
- Interventions and techniques (reduce contamination probability)
- Equipment / Facility / Housekeeping conditions (vectors of contamination)
- Aseptic technique / Traffic Flow / Behavior (vectors of contamination)
 - Use as “teaching moment” to operators/personnel
What Does An RTRA Look like?

- Protocol in three parts
 1) Listed potential or anticipated risks, and recommended actions if observed
 2) New, un-anticipated or previously un-recorded microbial risks
 3) IMD-A testing

- Risks are evaluated *in situ* and potential mitigation decisions made immediately

- This output permits the prioritization for risk reduction and risk mitigation activities

- The protocol and process is maintained ‘evergreen’ – as risk are retired the risk list adjusts to focus on new or higher priority risks, assuring continuous improvement

- Fundamentally RTRA realizes all the concepts in ICH Q9 – especially risk communication
Risk-Based Cleanroom and Environmental Controls
Terminal Sterilization Operations

RTRA Observations (Fill Rooms A & B)

Observations

Time/RTRAs

RTRA Observations (Fill Rooms A & B)
Advantages of RTRA

• Drives continuous improvement of the microbiological state of manufacturing environment and associated practice (cGMP’s)
• Fosters Open Communication at a Cross-Functional Level
• Positively alters the culture
• Change from a reactive microbiological quality system to a proactive quality system
• Science-based process for quality decisions
• Data are easily trended and the impact of improvements visualized
• ‘Evergreen’ process
• Helps meet the guidance for terminal sterilized product manufacture
• Is a ‘stepping stone’ to raise competency cross functionally
References

Redefining Cleanroom and Environmental Controls
Terminal Sterilization Operations
Thank You!