

Comparing Interval Estimates

- □ Statistical interval estimates are constructed to
- Estimate parameters
- Quantify characteristics of population

□ To correctly interpret estimates, it must be clearly defined what each interval is estimating

- Confidence/prediction intervals are well understood
- Definition of a tolerance interval varies among literature sources

What is a Tolerance Interval?

□ Tolerance intervals are being used with more frequency, thus a consistent definition needs to be established

- **D**efinitions found in literature:
- A bound that covers at least $(100-\alpha)\%$ of the measurements with $(100-\gamma)\%$ confidence (*Walpole and Myers*)
- o Focuses on where individual observations fall
- o Equivalent to a $(100-\gamma)$ % CI on middle $(100-\alpha)$ % of Normal distribution
- An interval that includes a certain percentage of measurements with a known probability (Mendenhall and Sincich)

o TI is identical to CI, except it attempts to capture a proportion of measurements rather than a population parameter, such as μ

• Computational methods vary depending on author

- Mee's definition uses non-central t distribution
- Owen et al. propose to control the percentage in both tails of a distribution • No more than a specified proportion lies below or above the TI

□ Alternative definition gives interval estimates on lower and upper *percentiles*, not a *percentage*, of a distribution

lower TI =
$$[\overline{X} - (\alpha/2, n-1, \delta)) \frac{s}{\sqrt{n}}, \overline{X} - t(1-\alpha/2, n-1, \delta) \frac{s}{\sqrt{n}}]$$
 and
TI = $[\overline{X} - (\alpha/2, n-1, \delta)) \frac{s}{\sqrt{n}}, \overline{X} - t(1-\alpha/2, n-1, \delta) \frac{s}{\sqrt{n}}]$

upper TI =
$$[\overline{X} + t(\alpha/2, n-1, \delta)) \frac{s}{\sqrt{n}}, \ \overline{X} + t(1-\alpha/2, n-1, \delta) \frac{s}{\sqrt{n}}]$$
, where $\delta = \Phi(p)$

Other Interval Estimates

- □ Simultaneous tolerance interval:
- Tolerance interval computed for more than one population or sample at a time
- **Two 1-sided tolerance interval**:
- 1-sided TI on lower $\alpha/2\%$ together with 1-sided TI on upper $\alpha/2\%$, designed to capture $(1-\alpha)$ % of distribution
- Confidence/prediction interval on confidence/prediction interval endpoints: Interval that protects the mean/future confidence/prediction interval endpoints (based on asymptotic Normal distribution of interval endpoints)
- \square β -expectation tolerance interval (Mee's definition):
- Interval that contains approximately 100β% of the distribution: $E_{\hat{\mu},\hat{\sigma}_{x}} \{ \Pr_{X}[\hat{\mu} - k\hat{\sigma}_{x} < X < \hat{\mu} + k\hat{\sigma}_{x} | \hat{\mu}, \hat{\sigma}_{x}] \} = \beta$

$$\sigma_x^2 = \sigma_b^2 + \sigma_e^2$$
 $\hat{\sigma}_x^2 = MSB/J + (1-1/J)MSE$

I = # of batches, runs, blocks, etc. J = # of reps within runs

Evaluating Tolerance Interval Estimates

Michelle Quinlan, University of Nebraska-Lincoln James Schwenke, Boehringer Ingelheim Pharmaceuticals, Inc. Walt Stroup, University of Nebraska-Lincoln

- Computed using σ_b^2/σ_e^2 (ratio of between to within batch variance) and central *t*-distribution
- using Satterthwaite approximation
- \square β -content tolerance interval:

 $\Pr_{\hat{\mu},\hat{\sigma}_{x}} \{ \Pr_{X} [\hat{\mu} - k\hat{\sigma}_{x} < X < \hat{\mu} + k\hat{\sigma}_{x} | \hat{\mu},\hat{\sigma}_{x}] \ge \beta \} = \gamma$ γ = confidence coefficient

- level γ (*Mee*)
- using noncentral *t*-distribution
- *Wald and Wolfowitz* use same definition to define tolerance intervals but instead use the formula:

 $\overline{X} \pm \sqrt{\frac{\pi}{\gamma^2}} rs$

□ SAS[®] Proc Capabilities Method 3 computes an approximate statistical tolerance interval that contains at least *p* proportion of the population with formula given by:

$$\overline{\mathbf{X}} \pm \mathbf{z}_{\frac{1+\mathbf{p}}{2}} (1+1/2n) \sqrt{\frac{n}{\chi_{\alpha}^2}}$$

- limits on percentiles
- Formulas are provided for constructing TI when one or both μ and σ are unknown

Evaluation of Interval Estimates

- \Box The relationship among prediction, β -expectation, and β -content intervals is investigated
- with 1 variance component (all factors fixed)
- β -expectation intervals are compared with β -content intervals

Prediction vs. β-Expectation Tolerance Intervals

- □ 1 variance component
- treatment means (regardless of the number of factors in model)
- Here $\sigma_b^2 / \sigma_e^2 = 0$ because = 0
- No df adjustment needed

Comparing Interval Estimates

• To understand tolerance intervals and their relationship among other interval estimates for one sample with one variance component, a computer simulation was conducted

50 iterations with data sets of size 50 • Observations were randomly generated, various interval estimates were constructed and compared

percentile) \sqrt{n}

PQRI Stability Shelf Life Working Group

• Variance is a linear combination of independent mean squares, df calculated

Interval that contains at least 100β% of population with given confidence

• Computed using factors from Normal and Chi-squared distributions \circ β -content interval in models with only 1 source of variation are computed

□ *Patel* states 1-sided tolerance limits are directly related to 1-sided confidence

• Prediction intervals are compared with β -expectation intervals for models

• β -expectation interval equals prediction interval for both overall mean and

Formula for β-expectation interval reduces to formula for prediction interval

□ The mean of each interval estimate across iterations is computed • Comparisons are made among the interval estimates

Characteristics of Interval Estimates

- □ Interval estimates can be characterized into 3 groups:
- Group 1: Bounds on mean or on a CI endpoint o lowerupper PICI, lowerupper CICI, lower 1-sided CI, lower 2-sided CI, lowerlower CICI. lowerlower PICI
- Group 2: Bounds on individual observations, PI endpoints, or upper bound on lower $\alpha/2$ percentile
- o lowerupper TI, lowerupper PIPI, lowerupper CIPI, lower 1 sided PI
- Group 3: Combination of bounds on individual observations, PI endpoints, or lower bound on lower $\alpha/2$ percentile
- \circ lower β -expectation (i.e. lower 2-sided PI), 2 1-sided lower TI,
- lowerlower TI, lower SAS TI, lowerlower CIPI, lower 1-sided TI, lower 1 sided TI with Bonferroni correction, lowerlower PIPI

Conclusions

- intervals
- \square Prediction intervals equal β -expectation tolerance intervals for models with 1 variance component
- \square β -content intervals TI are wider than β -expectation TI
- □ 1-sided TI is directly related to a 2-sided TI on percentile
- □ Simulation results indicate
- Interval estimates can be characterized into 3 groups
- It must be determined the correct parameter of interest to be captured to determine which estimate to use

University of Nebraska Department of Statistics

• Current literature sources offer a wide variety of definitions for tolerance