Product Quality Research Institute (PQRI) Stability Shelf Life Working Group

Objectives
- Investigate statistical methods for estimating shelf life which allow the sponsor to define and manage risk
- Assess alternative methods for estimating shelf life
- Enhance safety/efficacy of pharmaceutical products through accurate estimation of shelf life
- Research efforts include developing statistical methodology to directly estimate shelf life of pharmaceutical products

Outline
- Product Quality Research Institute (PQRI) Stability Shelf Life Working Group
- Shelf Life Estimation
- Simulation Results
- Example using real-life data
- Future/Continued Research

Proposed Shelf Life Estimation Procedure

- Estimated shelf life is storage time corresponding to the point where predicted mean (or quantile) response intersects specification limit or acceptance criteria
- Lower interval estimate is constructed around calibrated point to determine labeled shelf life
 - Similar to Shao & Chow's (1994) 1-sided lower confidence bound for 5th quantile of true shelf life
 - As additional information on the quality of the labeled shelf life estimate, 2-sided interval estimate (e.g. CI, PI, TI) is obtained about labeled shelf life
 - 2-sided interval estimate is a diagnostic tool
 - Analogous to Chow's (2007) safety margin which provides useful information regarding drug safety beyond labeled shelf life
 - Similar to Chow & Shao's (1991) tolerance correction to estimate the 95% lower bound for individual shelf lives

Interval Estimates on Calibrated Point
- 3 methods to obtain interval estimate about calibrated point:
 - 1) Using distribution of \(x_0 \)
 - 2) Using distribution of estimated parameter values (\(j \))
 - 3) Reflection method
- Method 2 produces less conservative estimates (usually \(\geq \) other methods in linear case)

Simulation Example
- Data simulated for 36 months using 3 and 6 batches
- Acceptance criteria is 95-105% of label claim
- Assay follows simple linear response decay
- Model: \(y = \beta_0 + \beta_1 x + \epsilon \)
 - Linear/batch effect on intercept
 - Random batch effect on intercept
- NLMIXED was used to analyze mean response and is compared with ICH approach

Simulation Results (3, 6 batches), \(\alpha = 0.05 \)
- Percentage of time true shelf life is captured (labeled \(\leq \) true)
 - ICH method: 98%, 95%
 - Mixed Model method: 98%, 95%
- Average difference between true and estimated shelf life
 - ICH: 4.7 months, 5.7 months
 - Mixed Model: 4.6 months, 2.4 months

Simulation Results – 6 batches

<table>
<thead>
<tr>
<th>Method</th>
<th>Sim. #</th>
<th>Average</th>
<th>Under</th>
<th>Over</th>
<th>Under</th>
<th>Over</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICH</td>
<td>1</td>
<td>27.5</td>
<td>-5.8</td>
<td>0.997</td>
<td>0.003</td>
<td>-5.9</td>
<td>0.9</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>27.6</td>
<td>-5.7</td>
<td>0.998</td>
<td>0.002</td>
<td>-5.7</td>
<td>0.2</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27.6</td>
<td>-5.7</td>
<td>0.999</td>
<td>0.001</td>
<td>-5.8</td>
<td>0.3</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>27.7</td>
<td>-5.7</td>
<td>0.999</td>
<td>0.001</td>
<td>-5.7</td>
<td>0.3</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>27.6</td>
<td>-5.7</td>
<td>0.998</td>
<td>0.002</td>
<td>-5.8</td>
<td>0.5</td>
<td>19.2</td>
</tr>
<tr>
<td>LMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>30.9</td>
<td>-2.4</td>
<td>0.951</td>
<td>0.049</td>
<td>-2.6</td>
<td>0.6</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>31.0</td>
<td>-2.3</td>
<td>0.948</td>
<td>0.052</td>
<td>-2.5</td>
<td>0.6</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>31.0</td>
<td>-2.3</td>
<td>0.945</td>
<td>0.055</td>
<td>-2.5</td>
<td>0.7</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>31.1</td>
<td>-2.3</td>
<td>0.941</td>
<td>0.059</td>
<td>-2.5</td>
<td>0.7</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>31.1</td>
<td>-2.3</td>
<td>0.940</td>
<td>0.055</td>
<td>-2.5</td>
<td>0.7</td>
<td>27.0</td>
</tr>
<tr>
<td>LMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflected</td>
<td>1</td>
<td>30.8</td>
<td>-2.6</td>
<td>0.961</td>
<td>0.039</td>
<td>-2.7</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Reflected</td>
<td>2</td>
<td>30.9</td>
<td>-2.4</td>
<td>0.951</td>
<td>0.040</td>
<td>-2.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Reflected</td>
<td>3</td>
<td>30.9</td>
<td>-2.4</td>
<td>0.949</td>
<td>0.051</td>
<td>-2.5</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Reflected</td>
<td>4</td>
<td>30.9</td>
<td>-2.4</td>
<td>0.951</td>
<td>0.049</td>
<td>-2.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Reflected</td>
<td>5</td>
<td>30.9</td>
<td>-2.4</td>
<td>0.952</td>
<td>0.048</td>
<td>-2.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Adding more batches
- ICH method:
 - increases bias (farther away from true shelf life)
 - overestimation rate approaches 0
- Mixed Model method:
 - decreases bias (closer to true shelf life)
 - overestimation rate approaches 0
- On average Mixed Model method produces longer, more accurate shelf life

Simulation Results, True Shelf Life: 33.3 months
- 3 batches: ICH and Mixed Model methods produce on average equal estimated shelf lives, but estimate is not good (< true shelf life)
- 6 batches: ICH method: 27.6 months Mixed Model method: 30.9 months
- 9 batches: ICH method: 26.9 months Mixed Model method: 31.4 months
- 12 batches: ICH method: 26.5 months Mixed Model method: 31.7 months
- Do we want an estimator whose bias increases as \(n \to \infty \) (ICH) or whose bias \(\to 0 \) as \(n \to \infty \) (Mixed Model) ???

Example using 6 batches of real-life data
- Data:
 - Blinded
 - 24-month
 - assay response (% label claim)
 - specification limits 90-110%
- Shelf life estimate using ICH guidelines: 23.8 months
- Shelf life estimate using Mixed Model: 28 months

Real-life data (using ICH)

Real-life data (using Mixed Model)

Future/Continued Research
- Develop theory/methodology for quantile regression with random batch effects to estimate shelf life
- Model a quantile of response distribution instead of mean
- Determine robustness of proposed method to estimate shelf life using a limited number of months of real-life data
- Determine the optimal interval to construct around labeled shelf life
- Determine sampling distribution of estimates using ICH and proposed methodology

Acknowledgements
This research is funded through the PQRI Stability Shelf Life Working Group
PQRI is the Product Quality Research Institute, Arlington, Virginia