ICH Q3D Guideline
Impact on the Users: Perspective of a Finished Product Manufacturer
John Glennon
9 November 2016
Disclaimer

The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the official policy or position of GlaxoSmithKline, CHPA or any of their officers, directors, employees, volunteers, members, chapters, councils, communities or affiliates.
Outline

• Implications for a Global Company
• Infrastructure and Business Processes
• An Example
• Meeting Regulatory Expectations
• Complying with the Pharmacopoeias
• Regulatory Uncertainties (‘Grey Areas’)
• Summary
• Conclusions
• Acknowledgements
ICH Q3D Elemental Impurities Timelines

Implementation Timelines

June 2016
- FDA implement ICH Q3D for New Products

June 2016
- EMA regions implement ICH Q3D for New Products

January 2018
- FDA will implement ICH Q3D for Existing Products
- USP <232>, <233> & <2232> effective
- USP<231> removed from individual monographs

January 2018
- Ph. Eur 5.20 effective
- Ph. Eur 2.4.8 removed from individual monographs

April 2017
- JP to implement Q3D for New Products

December 2017
- EMA regions implement ICH Q3D for Existing Products (EMA/CHMP/QWP/109127/2015)

Q2 2017
- Risk Assessments for Existing Product at GSK Sites

2021
- JP to implement Q3D Existing Products in JP18

JP will retain their Heavy Metal test

GSK is taking a proactive approach to implementation to ensure there is a buffer before the deadline:

- To allow time to develop control strategies (if required)
- Address unforeseen issues/delays
GSK is a Large Company – Pharmaceuticals, Vaccines and Consumer Health

- Global – Supplying both ICH and Non-ICH Regions
- Need to evaluate large number of existing products
 - > 1000!

- Solid Oral Dosage Forms - 70%
- Dermatological products - 20%
- Inhalation products - 5%
- Parenteral products - 5%

- GSK Manufacturing Sites in-scope = 59
 - Includes 6 API sites
- And lots of CMO’s
Infrastructure

• Initially established a multi-disciplinary team to consider implications of ICH Q3D across the whole business
 ➢ Representatives from Pharma, Consumer Healthcare and Biopharm organisations
 ➢ Included analytical, pharmaceutical, CMC regulatory, quality and engineering disciplines

• Infrastructure created and business processes developed to support implementation
 ➢ Covers both new and existing products
 ➢ Common process and tools being used across R&D and Manufacturing
Infrastructure

R & D Core Team
- Risk assessment process has been incorporated into pharmaceutical development
- Linking to CMC project teams to train and provide guidance on generating the risk assessment during the path to submission,
- Hand off to manufacturing Organization

Manufacturing Central Team
- Coordinating generation of risk assessments for existing products
- For products manufactured by GSK Sites
- For products manufactured by CMOs

CMC Regulatory
- Considering regulatory expectations for Q3D in ICH and non-ICH regions
- Requirements still evolving and not always aligned
- Provide advice on requirements for global submissions on new products and variations to existing products

Tools developed to support the risk assessment process, including:
- Product Risk Assessment Process Guide
- Product Assessment Spreadsheet
- Product Assessment Documentation Template

Training
- Internal training modules developed
- Extensive training conducted for personnel at both R&D and Manufacturing sites

Analytical Capability
- ICP-MS introduced at a number of GSK sites
- Other analytical capability being introduced e.g. Atomic Absorption
- Use of several contract laboratories
An Example
OSD Product – Daily Dose >10g; 2 main ingredients are “Natural”

- 2 Main Natural Ingredients
 1 Mined, 1 Plant

- Review Existing Limits vs PDE

- Theoretically, there could be an Issue

- Screen Product

- 2 x Class 1 EIs
 CT < EI < PDE
 • Main Natural Ingredients
 90% of formulation
 • Other ingredients unlikely to be major source of EI

- Control Strategy
 - Mined Material:
 Every Batch Tested by Supplier to a defined Specification
 - Plant Material:
 Depending on Results:
 • No Testing
 • Periodic testing
 • Test Every Batch

- Finished product testing is not required
 - Control is achieved by testing highest risk input materials to limits
 - Risk based decisions are a key driver of ICH Q3D
Meeting Regulatory Expectations

US
- **FDA Guidance on Elemental Impurities** (Draft, June 2016)
 - Risk Assessment
 - Summary of the risk assessment should be provided in NDA/ANDA
 - Suggests P.2 Section as location
 - Analytical Procedures
 - Recommends procedures described in USP <233> (ICP-AES and ICP-MS)
 - Analytical procedures for risk assessments should be validated,
 - validation criteria “can depend on the analytical procedures intended purpose”

Canada
- **Health Canada Recommendations for implementation of ICH** (July 2016)
 - Risk Assessment
 - Requires summary of risk assessment to be included in Module 2.3.P.5 Control of Drug Product in QOS
 - Overall risk assessment summary should be placed in Module 3.2.P.5.6 Justification of Specifications
 - Detailed risk assessments and data should be documented and available upon regulatory request (e.g. at inspection)

EU
- **Implementation strategy of ICH Q3D guideline** (Draft, July 2016)
 - Risk Assessment
 - Summary of the risk assessment is expected in the MMA,
 - Calculation Options
 - Component Approach preferred
 - Application of Drug Product Approach needs to be supported by risk assessment
 - For catalyst used in last step of synthesis of drug substance
 - Specification normally expected

EU
- **Implementation of ICH Q3D in the Certification Procedure** (August 2016)
 - Provides high level guidance on expectations for analytical methods used for screening purposes and for control
 - Provides an example of how to present the Risk Management Summary (in tabular format)
 - Clarification regarding the Heavy Metals Test as per Ph. Eur. General Chapter 2.4.8 given

ICH Q3D Guideline Impact on the Users: Perspective of a Finished Product Manufacturer
Complying with the Pharmacopoeias

USP vs. Ph Eur vs. JP Policy on elemental impurities
• Not completely aligned

Analytical Methodology
• USP <233> describes 2 procedures (ICP-AES and ICP-MS)
• Alternative procedures can be used if meet validation requirements and then considered ‘equivalent’ to ICP procedures
• ICP not necessarily ‘best’ method for all applications - Industry needs flexibility

Removal of Heavy Metals Test
• Being handled differently across regions
• Need to consider both ICH and non-ICH regions
Regulatory Uncertainties (‘Grey Areas’)

Component Approach vs. Drug Product Assessment
- Q3D allows different options - Companies need flexibility

Analytical Methodology
- Validation requirements for screening and control methods
- Applicant should be able to justify methodology for application

Application of the Control Threshold Concept
- A pragmatic approach is needed

Risk Assessment
- Summary of Risk Assessment for submission
 - Level of detail, format and location in CTD
- Full Risk Assessment
 - Level of detail, supporting data/information and how to document
 - Should be documented and available upon regulatory request (e.g. at inspection)
Summary

- A significant infrastructure has been created by GSK to manage and maintain ICH Q3D globally

- Summary of Risk Assessment
 - Greater clarity on regulatory expectations on level of detail and location in CTD needed
 - Needs to be aligned across ICH

- A pragmatic approach to application of the control threshold concept is needed

- Need to understand regulatory implications of the deletion of the reference to the heavy metals test
 - <231> in individual monographs of the USP
 - (2.4.8) in individual monographs of the Ph. Eur.

- Progression of ICH harmonized pharmacopoeial general chapter on analytical methodology for EIs with greater sense of urgency would be welcomed
Conclusion

• The implementation of ICH Q3D provides an opportunity to put into practice a **risk and science based approach to the control of elemental impurities**

• **Some divergence in regulatory expectations is already emerging**
 - Need to continue dialogue to minimize opportunities for further divergence

• The observed elemental impurity content of most products is significantly below the control threshold (i.e. <30% PDE) for all elements, with few exceptions
 - Perceived risk is higher than actual risk of EI contamination in drug products
 - The level of effort, formality and documentation of the quality risk management process should be commensurate with the level of risk (ICH Q9, Principle 2)

Greatest challenge is carrying out a risk assessment that meets regulatory expectations, rather than complying with Q3D!
Acknowledgments

- Mike James, Q3D EGW/IWG Member (GSK)
- Rob Sharp (GSK)
- Laura Rutter (GSK)
Thank you for your attention

Any Questions?