Strategies for Determination of Elemental Impurities in Complex Samples

Denise M. McClenathan
Group Leader – Elemental Analysis
Corporate Functions – Analytical
The Procter & Gamble Company
P&G Products Impacted

<table>
<thead>
<tr>
<th>Category</th>
<th># of “Drug” Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal Health</td>
<td>~100</td>
</tr>
<tr>
<td>Oral Care</td>
<td>~150</td>
</tr>
<tr>
<td>Beauty</td>
<td>~240</td>
</tr>
<tr>
<td>Household Care</td>
<td>~10</td>
</tr>
</tbody>
</table>

Product Types
- Probiotics
- Fiber Supplements
- GI OTC Medicines
- Cough/Cold Medicine
- Mouthwash/Rinse
- Toothpaste
- Antiperspirants
- Antidandruff Shampoo
- Color Cosmetics (SPF)
- Skin Care (SPF)
- Antibacterial Soap

Forms
- Tablets/Capsules
- Powders
- Oral Liquids
- Drops/Sprays
- Pastes/Gels
- Bars/Soaps
- Creams/Lotions
- Sticks/Roll-Ons
Analytical Challenges

Diverse Products

- **Daily consumption range:** < 200 mg – 250 g
 - 100% (medicines, leave-on treatments)
 - 5-10% (inadvertent swallowing, “habits & practices”)
 - 1% (“rinse-off” products, shampoo, soap)

- **Product composition**
 - **Excipients:** Salts, minerals, botanicals, organics, polymers
 - **Actives:** Bismuth subsalicylate, TiO$_2$, ZnO, SnF$_2$, NaF, SeS$_2$, Zn pyrithione, Al/Zr based actives
 - **Proportions:** < 1% to 95% of finished product
 - **Co-mingled:** Trace EIs and inorganic RMs

Multielemental Analysis

- **Class 1 (As, Cd, Hg, Pb) & 2a (Co, V, Ni) + catalysts**

 Exposure: mainly peroral and topical

- Quantitate all elements in one analysis
Available Instrumentation

Milestone UltraWAVE with ECR (HCl compatible)

SCP Hot blocks

Milestone UP

Perkin Elmer Elan DRCII ICP-MS

Perkin Elmer Optima ICP-OES

Bruker Tiger S8 WD-XRF

Agilent 7900 ICP-MS

Agilent 8800 QQQ ICP-MS
P&G’s Current “Platinum Standard”

- **Total Digestion**
 - High throughput (n=15)
 - Multiple digestion matrices in same batch/run

- Multielemental, sensitive, highly selective analysis
 - ICP-MS/MS
 - Multiple collision/reaction modes

Best-Available Screening Assurance

Most efficient approach to large number of products/materials
Example: Bismuth Subsalicylate Oral Suspension containing magnesium aluminum silicate

Digestion

Daily Dose: up to ~ 250 g

Matrix Effects

Corresponding Concentration Limits (per USP <232> PDEs)

- As: 60 ppb
- Cd: 20 ppb
- Hg: 120 ppb
- Pb: 20 ppb
- Co: 200 ppb
- Ni: 800 ppb
- V: 400 ppb

Sensitivity

Active: Bismuth Subsalicylate (BSS)

- Bi: m/z 209; Pb: m/z 206, 207, 208

Specificity
Specificity: Quantitating Pb in BSS Materials

- Natural variation, quantify Pb as sum of isotopes
- 209Bi$^+$ is massive relative to Pb; “fronts” into 208Pb$^+$

Remedy

Use MS/MS
Risk Assessment
- Survey finished products by formulation family
- Minimally quantitate Class 1 & 2a EIs
- Time-of-use verifications

Identify Sources
- Evaluate RMs for sources of EIs
- Determine variability of method/material
- Set RM specifications for control of EIs

Control Measures
- RM specifications for targeted EIs
- Methodology optimization
- Full validation per <233>

Implementation
- Deploy methods to plant
- Release testing of RMs

Meet PDE Limits

Near or above control threshold

Below control threshold

Reformulate
Risk Assessment Methodologies

Survey products by formulation family

Minimally quantitate Class 1 & 2a EIs
 • Complete digestion
 “total content” assessment
 • Multielemental, sensitive, highly selective
 • LOQ minimally 10% of PDE

Time-of-use verification (typical minimums)
 • Calibration: multiple point curve; low std determines LOQ
 • Controls: digestion blanks, second source standards
 • Variability: replicates (n=3)
 • Accuracy & precision: pre-digestion spikes in matrix (n=3)

Full validation per USP <233> not practical (or necessary) for risk assessments
Why Do Total Digestions?

- USP <233> asks for it
- Most straightforward approach to EIs
- Deployability: Consistency/enforcement
- Optimal robustness and precision

Lot-to-Lot Variability
- Total Digestion 6.6% RSD
- Acid Leach 12% RSD
- Recovery 54%

Total digestion vs acid leach

<table>
<thead>
<tr>
<th>Lots of Silicate Material</th>
<th>Pb Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.5</td>
</tr>
<tr>
<td>2</td>
<td>11.2</td>
</tr>
<tr>
<td>3</td>
<td>9.7</td>
</tr>
<tr>
<td>4</td>
<td>10.3</td>
</tr>
<tr>
<td>5</td>
<td>12.0</td>
</tr>
<tr>
<td>6</td>
<td>13.5</td>
</tr>
<tr>
<td>7</td>
<td>14.2</td>
</tr>
</tbody>
</table>
Key to Total Digestion Approaches

- Choose the appropriate digestion matrix
 \[\text{HNO}_3, \text{H}_2\text{O}, \text{HCl}, \text{HF}, \text{HBF}_4, \text{H}_3\text{PO}_4 \]

- Prevent formation of insoluble fluorides with HBF$_4$
 - Many silicates/products also contain Mg, Al, Ca, etc.
 - *Ultra-trace HBF$_4$ not commercially available*
 - Complex excess fluoride with boric acid (2 step process)
 - Prepare ultra-trace HBF$_4$ from HF & boric acid

- Stabilize the analyte(s)
 - Hg: Au, HCl
 - Sb, Sn: HF, HCl

Not just “Nuking Sample”…
For products, leverage...
- Material knowledge
- Product chemistry

Titrate digestion matrix to most complex ingredient
Risk Assessment: Quantitate Class 1 & 2a EIs

Generic product: Minerals (silicates), Metal based active

Excellent precision

\(n=3 \) replicate preparations

\(RSD < 5\% \)

- HNO\(_3\) + HBF\(_4\) in Microwave
 - Complete digestion
- ICP-MS/MS analysis
 - Sensitivity
 - Matrix effects
 - Specificity
Risk Assessment: Accuracy

Generic product: Minerals (silicates), Metal based active

Need robust measure of incurred levels for assessment of accuracy

Pre-digestion spikes ≤ PDE limit
n=3 replicates

Incurred levels
Risk Assessment: Accuracy

Generic product: Minerals (silicates), Metal based active

Excellent accuracy even with incurred levels
Mean recovery (n=3): 92-103%
RSDs: 0.7%-5.1%
Identify Sources of EIs

Evaluate RMs for sources of EIs
- Total digestion
- Multielemental, sensitive, high specificity

Goal: Obtain mass balance

Determine variability of method/material
- Analyze high number of lots
- Evaluate alternate suppliers/grades

Set RM specifications for control of EIs

Most Extreme Capability Requirements
Digestion, Matrix Effects, Specificity
Mass Balance from RM

Calculate exposure contribution from each RM

Confidently identify sources of Els (per element of concern)
Setting Specifications for RMSS

<table>
<thead>
<tr>
<th>Raw Materials</th>
<th>Product A</th>
<th>Product B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicate</td>
<td>[Exposure]</td>
<td>[Exposure]</td>
</tr>
<tr>
<td>Active Salt</td>
<td>[Exposure]</td>
<td>[Exposure]</td>
</tr>
<tr>
<td>Mineral</td>
<td>[Exposure]</td>
<td>[Exposure]</td>
</tr>
</tbody>
</table>

Maximum contribution if at specification

Exposure (µg/day)

PDE
Strategies for **Control Measures**

RM specifications for targeted EIs
- Identified as problematic in previous stages
- Quantitative methods for on-going control

Methodology optimization
- “State-of-the-art” to common platforms
 - **Goal:** Maintain accuracy and specificity
- Consider complete/exhaustive extractions (without HF/HBF₄)
 - **Goal:** Equivalent to total digestion
- Optimize the collision/reaction cell modes as needed
- Cross validate various approaches

Full validation per USP <233>
- Include alternate preparations where possible
- Demonstrate multiple collision/reaction cell modes
Digestion Optimization – Silicate

Mean Comparison: 98.9%

Total Digestion
- HNO₃, H₃PO₄, HBF₄
- Precision (n=12): 1.6% RSD
- Mean accuracy (n=12): 100.8%
- Solution stability: 20 days

Complete/Exhaustive Extraction
- HNO₃, H₃PO₄
- Precision (n=3): 0.7% RSD
- Solution stability: 20 days

![Bar chart showing Pb Concentration (ppm) vs Lot Number.](chart.png)
Digestion Optimization – Talc

Mean Comparison: 104.5%

Total Digestion
- HNO₃, HCl, HBF₄
- Precision (n=12): 3.3% RSD
- Mean accuracy (n=12): 101.0%
- Solution stability: 18 days

Complete/Exhaustive Extraction
- HNO₃, HCl
- Precision (n=3): 11% RSD
- Solution stability: 1 day

Lose flexibility

Doesn’t work for all EIs

55% Recovery

Pb Concentration (ppm) V Concentration (ppm)
Digestion Strategies at Each Stage

Risk Assessment
- Total digestion
 - Straightforward compliance
 - Efficient (large #’s)
 - Improved methodology

Identify Sources
- Near or above control threshold
- Total digestion
 - Mass balance
 - Material variability
 - Efficient (large #’s)

Control Measures
- Below control threshold
- Total digestion
 - Complete extraction* (targeted EI)

Implementation
- Total digestion
 - Complete extraction* (targeted EI)

*If equivalent to total digestion

Meet PDE Limits
Acknowledgements

Coauthors

Roy Dobson Kelly Smith Andrei Shauchuk Christina Haven Matt Kaczanowski

Other Contributors

David McCauley-Myers, Scott Lehn, Lauren Koch, Francisco Arias, Bob Lyon, John Hatjopoulos, Wally Hirth, Darwin Popenoe, Jeff Gray, Erica Takahashi, Allyn Kaufmann, Brad Price, Matt Laufersweiler