Present and Future for Continuous Manufacturing: FDA Perspective

Sau (Larry) Lee, Ph.D.

Deputy Director (Acting) & Emerging Technology Team Chair
Office of Testing and Research
Office of Pharmaceutical Quality
US FDA Center for Drug Evaluation and Research

3rd FDA/PQRI Conference on Advancing Product Quality
March 22-24, 2017
Outline

• Where are we now?
 – What is current regulatory landscape?
 – What types of continuous manufacturing (CM) technologies have we seen so far?
 – What progress have we made?

• Where are we heading?
 – What new CM approaches are coming?
 – What are the opportunities or challenges?

• How are we getting ready?
Current Regulatory Landscape

• Regulatory Agencies, including the FDA, European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA), support the adoption of CM for pharmaceutical production based on science- and risk-based approaches.
Current Regulatory Landscape

• There are no major regulatory hurdles for CM implementation.

• Perceived risk or fear still exists because regulators may lack experience in CM, leading to many unwarranted questions and deficiencies.

• Each agency (FDA, EMA, and PMDA) established specialized teams to encourage early interaction with industry
 – FDA Emerging Technology Team
 – EMA Process Analytical Technology (PAT) Team
 – PMDA Innovative Manufacturing Technology Working Group
CM Technologies Thus Far

• Hybrid CM models for drug product
 – Mostly **continuous direct compression**
 – Continuous wet granulation
 – Immediate-release solid orals
 – New drugs under a breakthrough pathway
 – Existing FDA approved products switching from a batch to CM process

• Hybrid CM models for drug substance
 – Continuous drug synthesis plus batch crystallization
 – Existing FDA approved products

• Continuous upstream bioprocessing
 – Existing FDA approved product
CM Technologies Thus Far

• Control Strategy
 – Increasing use of active control systems
 • Feedback or ratio control for mass flow rates
 – Increasing use of PAT tools for real-time process monitoring and control
 • NIR for blend uniformity
 • Analyzers for process parameters (e.g., mass flow rates)
 – Increasing use of real time release testing (RTRT) approaches
 • Dissolution models
 – Process Models
 • Resident time distribution model for material traceability, non-conforming material diversion, and blend uniformity
 – Increasing use of automation
 – Off-line end product testing
Progress Made

• Vertex’s ORKAMBI™ (lumacaftor/ivacaftor)
 – 1st NDA approval for using a CM technology for production of the Cystic Fibrosis drug (tablets) (July 2015)\(^1\)
 – Met the PDUFA timeline

• Prezista (darunavir)
 – 1st NDA supplement approval for switching from batch manufacturing to CM process for an FDA-approved HIV drug (tablet) (April 2016)\(^2\)
 – Met the PDUFA timeline (4 mouths)

• Over 15 ETT-Industry meetings since the launch of ETT program in early 2014 providing feedback on the development of CM processes
 – Drug substance
 – Drug product
 – Small-molecule and biotechnology products
 – Control strategy utilizing models

\(^1\)http://connect.dcat.org/blogs/patricia-van-arnum/2015/09/18/manufacturing-trends-in-continuous-mode

\(^2\)http://www.pharmtech.com/fda-approves-tablet-production-janssen-continuous-manufacturing-line
Upcoming CM approaches

• Modular continuous processing systems with standardized plug-and-play equipment
 – Small footprint
 – Highly flexible (may be even movable) for manufacturing of a wide range of products
 – Supervision via an integrated process control system
 – Pfizer’s Portable Continuous, Miniature and Modular (PCMM) Manufacturing for Solid Oral Dosage forms

• Opportunities or Challenges
 – Knowledge platform development and management to support faster development of products using the same equipment modules
 – Efficient cleaning approaches to allow rapid switching from manufacturing one to another product while avoiding cross-contamination between different products

http://www.facilityoftheyear.org/winners/2016-equipment-innovation
Upcoming CM approaches

- Increasing applications of Process Models
 - Process and product understanding
 - Material traceability
 - Non-conforming material diversion
 - Advanced process control
 - In-process control or product release

- Opportunities or Challenges
 - Useful tools for risk communication and knowledge management to support faster product development
 - Regulatory expectation for information to support model development, validation, maintenance and update
 - Intended purpose of the model
 - Risk to product quality
 - Firm’s quality system
Upcoming CM approaches

• **Performance-based Approach for Control Strategy**
 – On-line and/or at-line measurements (i.e., PAT tools) at high sampling frequencies for monitoring and controlling quality attributes
 – Real-time information informing the state or “health” of the process
 – Quality assurance by conformance to the specification at relevant control points (e.g., in-process controls of quality attributes) in the process.

• **Opportunities or Challenges**
 – *Effective regulatory oversight* (e.g., established conditions?)
 – *Operational flexibility* desired by industry to manage and improve the process within its quality management system
 – Establishment of *clear linkages of control points to finished product critical quality attributes* (e.g., what information is needed in a regulatory submission to support this approach?)
 – Can *process parameters* be part of this approach (e.g., multivariate analysis)?
Upcoming CM approaches

• Pharmacy on Demand
 – Portable systems that can be configured to produce different drugs on demand
 – Rapidly deployable to produce drugs needed to address urgent health crises
 – Better fit for low-volume drugs (e.g., orphan drugs)

• Opportunities or Challenges
 – Mini-manufacturing platform requiring robustness evaluation similar to that for device and environmental considerations?
 – New approaches, criteria or considerations for validation and product release?
 – Any CGMP implications?

http://news.mit.edu/2016/portable-pharmacy-on-demand-0331
Upcoming CM approaches

• End-to-end CM processes
 – Integrated synthesis, purification, and final dosage formation
 – Regional manufacturing and distribution network

• Opportunities or Challenges
 – New considerations for control strategy as there is no isolated drug substance?
 – Adapting to the current Common Technical Document (CTD) format?

https://iscmp2016.mit.edu/
Getting Ready

• Right Mindset and Culture
 – Regulatory agencies
 • Willing to learn/understand and recognize the potential of new technologies with an open mind
 • Make science- and risk-based assessments and decisions
 • Be transparent to industry and not afraid to ask questions
 • Multi-disciplinary approach (collaborative)
 – Industry
 • Be transparent and willing to share with the agency early
 • Not afraid to receive and answer many questions from the agency
 • View regulators as part of your team

• We are getting there!
Getting Ready

- Building collaborative knowledge platform
 - Promote regulatory science and research
 - Growing OPQ in-house research (e.g., process modeling and simulation, continuous crystallization, and continuous perfusion bioreactors)
 - External research collaboration (e.g., BARDA, MIT, Rutgers, Purdue, UMass Lowell, CONTINUUS Pharmaceuticals)
 - Industry working together to develop and implement CM technology
 - Joint development of enabling technologies for CM
 - Early joint technology-focus discussions with FDA through the Emerging Technology Program
 - Academia working with industry and agencies to advance CM technologies
 - Get early input from industry and agencies on their CM research
 - Be innovative but understand what industry and agencies need
Getting Ready

• Building Standards and Guidelines Together
 – Agencies’ guidelines to ICH guideline
 • Moving towards global alignments on key regulatory aspects of CM
 – Common technical standards or best practices
 • ASTM and USP
 – Dynamic guidelines and standards
 • Revision warranted to reflect advancement in knowledge

• Continued knowledge sharing
 – Sharing what you learned in public forums
 – Enhanced information sharing among different regulatory agencies
 – Research publications
The Desired State

The Vision

“A maximally efficient, agile, flexible pharmaceutical manufacturing sector that reliably produces high quality drugs without extensive regulatory oversight.”
Acknowledgement

• Christina Capacci-Daniel
• Celia Cruz
• Sharmista Chatterjee
• Arwa El Hagrasy
• Tara Gooen
• Rapti Madurawe
• Thomas O’Connor
• Emerging Technology Team