The Science of Topical Drug Classification System

Vinod P. Shah, Ph.D., FAAPS, FFIP.
Pharmaceutical Consultant,
PQRI, Board Member
North Potomac, MD., USA

3rd FDA / PQRI Conference on Advancing Product Quality
Track # 1. Drug Classification, Release and Modeling for Setting Clinically Relevant Specifications
Session # 6. Topical Classification System.
Rockville, MD. March 22-24, 2017
Outline

• Principle of TCS
• Q1, Q2, and Q3
• SUPAC-SS
• In Vitro Release (IVR)
• Classification of TCS
• BCS and TCS comparison
• Impact of TCS
• Conclusions
Topical Drug Classification System (TCS)

• TCS is a framework for classifying topical drug products based on its qualitative and quantitative composition and micro structure arrangements of matter.

• TCS is a classification system of topical drug products, which when applied will help in approval of topical drug products, without conducting in vivo studies, but assuring product efficacy.

• It is a drug development tool to justify ‘biowaiver’ in conjunction with the drug release of the topical dosage form.
Topical Drug Classification System (TCS)

• TCS is based on established scientific principles specifically developed for semisolid topical products (SUPAC-SS) and is combined with the IVR of the drug product.
• TCS considers the qualitative (Q1) and quantitative (Q2) composition of inactive ingredients and microstructure arrangement of topical semisolid products (Q3).
According to 21 CFR 314.94 the generic topical drug product will need to have the same excipients, qualitatively (Q1) and quantitatively (Q2) as the Reference Listed Drug (brand name drug) (RLD).

If the generic product is not Q1 and Q2 compared to RLD, the applicant must provide adequate proofs that the differences will not impact the safety and efficacy profiles of the product.
SUPAC - SS

• The SUPAC-SS guidance was developed to address:
 ▪ Changes in the component or composition,
 ▪ Changes in the manufacturing process and equipment,
 ▪ The scale-up/scale-down of manufacture, and/or
 ▪ Change in site of manufacture.
Level 1 Changes: Changes in excipients up to 5% - unlikely to have detectable impact on quality/performance

Level 2 Changes include:

1. Changes of > 5 and ≤ 10% of excipients,
2. Change in equipment to a different design / different operating principles; process changes including changes in rate of mixing, rate of cooling, operating speeds and holding time,
3. Change in batch size beyond a factor of 10.
“The physical properties of the dosage form depend upon various factors, including the size of the dispersed particles, the interfacial tension between the phases, the partition coefficient of the active ingredient, between the phases, and product rheology. These factors combine to **determine the release characteristics** of the drug, as well as other characteristics, such as viscosity.” … SUPAC-SS

“An in vitro release rate can reflect the combined effect of several physical and chemical parameters, including solubility and particle size of the active ingredient and rheological properties of the dosage form.” … SUPAC-SS
Q1, Q2 and Q3. In vitro Release

- Q1 – Same ingredients/components as RLD
- Q2 – Same ingredients/components in the same concentration as RLD
- Q3 – Same ingredients/components/in the same concentration with same arrangement of matter (microstructure) as RLD \(\Rightarrow\) Same IVR
- Acceptable comparative physicochemical characterization (Q3) and equivalent in vitro release to RLD
- Biowaiver may be granted with supportive data to demonstrate Q1 and Q2 same and similar physicochemical characteristics (Q3 \(\Rightarrow\) IVR)

IVR and Q3

• Adequately developed and validated, IVR methodology can provide information on the combined role of several physico-chemical characteristics, including the particle or droplet size, viscosity and diffusional resistance of the vehicle.

• The IVR reflects the microstructure, arrangement of the matter and the state of aggregation of the dosage form (Q3). Q3 → IVR

• IVR methodology for the evaluation of Q3 similarity is used in TCS classification for application of biowaiver.
Microstructural Similarity (Q3)

• Microstructure similarity: Particle/droplet size measurements - similar distribution, similar rheological properties
• Microstructure non-similarity: differences in physical characteristics, in rheology (even for similar particle size) and in IVR rates

Rheology:
• Oscillatory measurements:
 Evaluation of linear viscoelastic response;
• Rotational tests:
 Shear stress (viscosity) vs. strain rate measurements;
 Yield stress (σ_0) - inversely proportional to spreadability.
• Validation of Q3 must be related to Therapeutic Equivalence
Excipients in Topical Drug Products

- Excipients may have significant impact on drug release from topical dosage form, skin barrier properties and/or drug penetration directly affecting rate and extent of exposure at site of action, and may have an effect on *in vivo* performance of the product, thereby changing the safety and efficacy profiles.
 - If all three parameters, Q1, Q2 and Q3 are the same between the RLD and the generic product, the generic product may be suitable for a biowaiver.
 - If they are not the same, a biowaiver cannot be provided and additional studies or a biostudy will be required.

- Using these scientific principles, a Topical Drug Classification System (TCS) is proposed to simplify the regulatory requirements.
Topical Drug Classification System - TCS

• Based on composition (Q1 and Q2) and IVR similarity (Q3), the topical drug products are classified as TCS class 1, 2, 3 and 4.

• Under the proposed classification:
 – Only TCS class 1 and TCS class 3 drug products are eligible for biowaiver;
 – TCS class 2 and TCS class 4, are not eligible for biowaiver and will require in vivo BE studies for drug approval;
 – The nature and type of in vivo BE study will depend on the therapeutic class and dosage form category.
Topical Drug Classification System, TCS

- Q1, Q2 Same
- Q3 Same

TCS class 1

Biowaiver

Same as
Brand Name
Inert excipients

TCS class 3

Generic Product

Q1, Q2 Different

Evaluate Excipients

Q3

Different than
Brand Name
Not inert excipients

TCS class 4

TCS class 2

BE Study

Topical Drug Classification System - TCS

Biowaiver

• **TCS Class 1:**
 Q1, Q2 and Q3 same \rightarrow IVR

• **TCS Class 3:**
 Q1 and Q2 different, Q3 same \rightarrow IVR
 - May require additional in vitro studies
 (e.g., particle size, pH, globule size, rheology)
 - Excipient evaluation

Bioequivalence Study

• **TCS Class 2:**
 Q1, Q2 same but Q3 different \rightarrow BE studies

• **TCS Class 4:**
 Q1, Q2, Q3 different \rightarrow BE studies
Topical Drug Classification System, TCS

Q1, Q2 Same
Q3 Same
TCS class 1

Q1, Q2 Same
Q3 Different
TCS class 2

Q1, Q2 Different
Q3 Same
TCS class 3

Q1, Q2 Different
Q3 Different
TCS class 4

Review

A science based approach to topical drug classification system (TCS)

Vinod P. Shaha,*, Avraham Yacobib, Flavian Ștefan Rădulescuc, Dalia Simona Mironc, Majella E. Laned

a Pharmaceutical Consultant, North Potomac, MD, USA
b DOLE Pharma LLC, Englewood, NJ, USA
c Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
d University College London School of Pharmacy, London, UK

\textbf{Article info}

\textit{Article history}
Received 22 April 2015
Received in revised form 7 June 2015
Accepted 8 June 2015
Available online 10 June 2015

\textbf{Abstract}

The Biopharmaceutics Classification System (BCS) for oral immediate release solid drug products has been very successful; its implementation in drug industry and regulatory approval has shown significant progress. This has been the case primarily because BCS was developed using sound scientific judgment. Following the success of BCS, we have considered the topical drug products for similar classification system based on sound scientific principles.
BCS and TCS

- BCS is based on the solubility and permeability characteristics of the drug substance.
- TCS system is based on established scientific principles specifically developed for semisolid topical products (SUPAC-SS) and is combined with IVR of the drug product.
- TCS considers the qualitative and quantitative composition of inactive ingredients and microstructure arrangement of topical semisolid products.
- In both the classification systems, BCS and TCS, their applicability for biowaiver granting relies on the use of in vitro testing as key decision tools.
BCS

Publications:

- BCS Guidance: Aug. 2000 (class 1)
- BCS Guidance update (Draft): May 2015 (class 1 and 3)

Requirements:

- API
 - Solubility and Permeability
 - Dosage form
 - Class 1 - Dissolution
 - Class 3 with Q1 + Q2
 - Dissolution

TCS

Publications:

- SUPAC-SS Guidance: May 1997

Requirements:

- Dosage form
 - Q1 + Q2
 - Inert excipients
 - Microstructure
 - In vitro release
BCS and TCS

Oral drug products

- **BCS**
 - High Permeability, High Solubility: BCS class 1
 - High Permeability, Low Solubility: BCS class 2
 - Low Permeability, High Solubility: BCS class 3
 - Low Permeability, High Solubility: BCS class 4

Topical drug products

- **TCS**
 - Q1, Q2 Same, Q3 Same: TCS class 1
 - Q1, Q2 Different, Q3 Same: TCS class 3
 - Q1, Q2 Different, Q3 Different: TCS class 4

Mini review

Commonality between BCS and TCS

Vinod P. Shaha,*, Flavian Ştefan Rădulescub, Dalia Simona Mironc, Avraham Yacobid

a Pharmaceutical Consultant, North Potomac, MD, USA
b Department of Drug Industry and Pharmaceutical Biotechnologies, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
c Department of Pharmaceutical Physics and Informatics, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
d DOLE Pharma LLC, Englewood, NJ, USA

\textbf{ARTICLE INFO}

\textbf{Article history:}
Received 7 March 2016
Received in revised form 14 May 2016
Accepted 17 May 2016
Available online 18 May 2016

\textbf{Keywords:}
\textit{In vitro} release
Biowaiver
Topical drug classification system
BCS
TCS

\textbf{ABSTRACT}

Both biopharmaceutics classification system (BCS) and topical drug classification system (TCS) are based on sound scientific principles with the aim of providing biowaiver and reducing regulatory burden without lowering the quality requirements and standards of approval for the drug products. BCS is based on the solubility and permeability properties of the active pharmaceutical ingredient (API, or drug substance) whereas the TCS is based on the qualitative and quantitative composition of the dosage form and the in vitro release rate of the active ingredient as key decision tools. Both BCS and TCS take drug release and dissolution as their guiding principle for providing biowaiver, increasing the availability and affordability of safe and effective medicines to the consumers and at the same time maintaining the drug product quality.

© 2016 Elsevier B.V. All rights reserved.
Impact of TCS

• It will help in developing appropriate regulatory guidance.
• It will help in updating/modifying existing guidance.
• It will validate the application of IVR beyond the current SUPAC-SS framework.
• It will facilitate in product development, reduce regulatory burden and assure product quality.
• It will increase the availability of topical drug products to patients and consumers at a more affordable cost.
Conclusion

• A practical and science based classification system, TCS, for topical drug products is proposed.

• TCS will facilitate:
 – Generic product development, reduce the regulatory burden and assure product quality across all therapeutic classes.
 – Availability of topical drug products to patients and consumers at a more reasonable cost.
Physicochemical Characterization of Acyclovir Topical semisolid dosage forms towards TCS Validation

Flavian Radulescu
University of Medicine and Pharmacy Carol Davila Bucharest
Romania

Research partly supported by PQRI
Thank you for your Attention