Dissolution coupled with oral absorption modeling to predict clinically relevant performance

David Sperry, Nikolay Zaborenko and Kaoutar Abbou Oucherif Eli Lilly

Third FDA/PQRI Conference on Advancing Product Quality March 22-24, 2017

© 2017 Eli Lilly and Company

Biorelevant tools useful for drug development

Integrating in vitro and in silico models to predict in vivo performance

□ Three case studies

Approach to biorelevant methods

Biorelevant tools

In vitro apparatuses

- USP-type paddle methods
- One-step and two-step
- Artificial Stomach Duodenum (ASD) model
- Scaled-down two-step dissolution
- Microcentrifuge test

Biorelevant fluids

- SGF (FaSSGF, FeSSGF)
- FaSSIF, FeSSIF
- Simulated saliva

See, for example:

E. Jantratid and J. Dressman, "Biorelevant Dissolution Media Simulating the Proximal Human Gastrointestinal Tract: An Update," *Diss. Tech.*, (2009) **16**(3), 21.

USP-type methods: Example

One-Step Dissolution

- 900 mL FaSSIF
- 75 rpm paddle

Two-Step Dissolution

- 300 mL 0.01 N HCI
- 75 rpm paddle
 → 20 min
- 300 mL FaSSIF
- 75 rpm paddle
 - \rightarrow 260 min

2

ASD model

Stomach Emptying: First order decay (w.r.t. Volume) Emptying Half-life = 15 min Duodenum: Constant volume = 30 mL

ASD measurements

Biorelevant tools

2 Mechanisms

- Rotating disk dissolution (RDD, intrinsic dissolution)
- Flow-through imaging
- -NMR
- Focused beam reflectance measurement (FBRM)

Diffusion coefficient

- Intrinsic dissolution rate: Solve Navier-Stokes for a rotating disk (Levich equation)
- Stokes-Einstein: laminar viscous drag on a spherical molecule

Diffusion coefficient by other methods

Flow-through UV Imaging (SDi300)

http://www.sirius-analytical.com/system/files/Sirius%20Application%20 Note%20304-13%20UK%20web.pdf Diffusion-Ordered Spectroscopy
 2D NMR

Lasentec® FBRM® experiments

Slide courtesy of Carrie Coutant

Biorelevant tools

B Dissolution Models

Dissolution model

Noyes-Whitney dissolution model, with several enhancements.

4

20

particle

30

13

20

Drug

Particle

10

t

Diffusion Layer

Bulk Solution

In vitro-in silico approach

Case 1 – Modified release formulation

- Overall development challenge
 - Increase the throughput of the process by a simple formulation change: increase the drug-containing layer thickness thereby increasing the drug load.
- Formulation A
 - Spray-coated bead
 - Bead enteric coated

- "New" high-drug load formulation B
 - Drug load increased ~50% by spraycoating more drug on bead
 - Other aspects remain the same

* Some details of formulation omitted for clarity

Sperry et al., Molecular Pharmaceutics, 2010, 7, 1450–1457.

In vitro dissolution

• Different strengths tested in vitro by different methods

- Many method conditions explored
 - e.g. Both paddles and baskets specifically investigated.
- Dissolution is different between formulations
- And difference is not an artifact of the test

Sperry et al., *Molecular Pharmaceutics*, **2010**, 7, 1450–1457.

In vitro modeling

Table 1. Pharmacokinetic Parameter Results of Sensitivity Analysis Showing Impact of Changes to the Release Profile

	Weibull time-scale parameter (A)		
parameter	0.04	0.15ª	1.1
time to reach 80% (min) ^b	41	56	114
relative C _{max}	1.00	1	0.91
relative AUC (0-∞)	1.00	1	0.99
t _{max} (h)	2.4	2.5	3.46

^a The Weibull function fit to formulation A gives a time-scale parameter A = 0.15. ^b The time to reach 80% dissolved for the dissolution profile described by the Weibull function.

 Agreement suggests differences in release rate observed *in vitro* are due purely to the difference in surface area.

Sperry et al., Molecular Pharmaceutics, 2010, 7, 1450–1457.

Bioequivalence study

• Met bioequivalence criteria of 0.8 and 1.25

In this case, simple buffers and USP II method produced adequate biorelevant predictions.

Table 2. Relative Pharmacokinetic Parameters and Confidence Intervals Comparing Formulations A and B

parameter	ratio of geometric mean (B/A)	90% confidence interval	
C _{max}	1.03	(0.95-1.11)	
AUC(0−∞)	0.98	(0.92-1.05)	

Sperry et al., Molecular Pharmaceutics, 2010, 7, 1450–1457.

Case 2 – Free base conversion

- Solid forms: free base & a salt
- Properties: Low solubility, pk_a ~7

Rotating Disk Dissolution

ASD: Salt supersaturation and precipitation

Distribution of gastric conditions

Systems-based Pharmaceutics

- Linking manufacturing excellence with patient performance

Case 3 – Integrating ASD data

Low solubility base

ASD Duodenum Concentration

Precipitation rate parameters

Model parameter	Final value	Initial guess	95% C.I	Standard deviation
Growth constant	0.55	0.36	1.42	0.70
Growth order	1.60	0.81	2.29	1.13
Nucleation				
coefficient	14.01	13.85	974.9	481.2
Nucleation order	2.61	2.77	399.3	197.1

Incorporating ASD results in gCOAS GI model

Acknowledgements

- Lee Burns
- Carrie Coutant
- Todd Gillespie
- Brian Winger