Safety Qualification Process and Application of Thresholds

Jim Blanchard PQRI L&E Toxicology Subgroup Principal Scientist Aradigm

Outline

- Safety qualification process
 - What to do when leachables exceed:
 - Safety concern threshold (SCT)
 - Qualification threshold (QT)
 - Decision tree
- Roles for risk assessment in OINDP development
- Application of risk assessment and thresholds

Leachable Safety Qualification Process

- Based on ICH Q3A and Q3B for impurities
- When leachable \leq SCT, then qualified
- If leachable > SCT but ≤ QT, then options are:
 - Reduce leachable \leq SCT or
 - Conduct risk assessment, then
 - Qualify leachable via assessment and/or testing, or
 - Propose higher acceptable level for leachable to FDA
- If leachable > QT, then options are:
 - Reduce leachable \leq QT or
 - Conduct risk assessment, then
 - Qualify leachable via assessment and/or testing, or
 - Propose higher acceptable level for leachable to FDA

Leachable Safety Qualification Process (2)

- Using a higher or lower acceptable level for a leachable is an option based on scientific rationale, potency, and level of concern
 - Alternate acceptable levels may be proposed to FDA and treated on a case-by-case basis.
- Lower acceptable levels are needed for compounds with special safety concerns, such as:
 - Nitrosamines
 - Polynuclear aromatics (PNA's)
 - Mercaptobenzothiazole
 - Such leachables considered on case-by-case basis

Qualification of Leachables

- Qualification steps considered "appropriate" depend on:
 - Patient population
 - Total daily intake (TDI)
 - Duration of drug administration
- Qualification steps
 - Risk assessment
 - Structure-activity relationship (SAR) analysis
 - Literature review
 - Safety studies
 - Genotoxicity
 - General toxicity
 - Other, as needed

Qualification of Leachables (2)

- Safety studies can be conducted on:
 - OINDP containing the leachables to be controlled
 - Isolated leachables may be appropriate
- Genotoxicity minimum of two in vitro tests
 - Point mutation
 - Chromosomal aberration

Qualification of Leachables (3)

General toxicity studies

- Compare unqualified to qualified material
- One relevant species
- Duration
 - Usually 14 to 90 days
 - Single dose appropriate for single-dose drugs

• Other specific toxicity endpoints, as appropriate

 Carcinogenicity studies may be needed for compounds with SAR alerts for carcinogenicity

Qualification of Leachables (4)

- Role for USP and ISO Biocompatibility Tests
 - United States Pharmacopoeia: USP <87> and <88>
 - International Standards Organization: ISO 10993
 - Propose these tests may be appropriate for <u>suppliers</u> of OINDP device components
 - Drug product <u>manufacturers</u> need <u>not</u> perform these tests when a more comprehensive in-vivo toxicological evaluation is available.

Decision Tree

Roles of Risk Assessment in OINDP Development

Risk assessment tools

- SAR analysis
- Literature review
- Risk assessment to evaluate safety of:
 - Components for container/closure system
 - Extractables from initial studies on components
 - Leachables with total daily intake (TDI) > SCT or QT

Risk Assessment: Component Selection

- Preliminary risk assessment done on component formulations provided by suppliers
 - Evaluate in terms of potential extractables and leachables
- Allows for informed component selection early in development
 - Allows for early identification compounds of potential concern, thereby saving time and resources.
- Involves collaboration among toxicologists, material scientists, and chemists

Risk Assessment: Extractables

- Preliminary risk assessment done on extractables from components
- Confirms component selection
- Involves collaboration between toxicologists and chemists

Risk Assessment: Leachables

- Risk assessment on leachables with TDI > SCT or QT
- Involves collaboration between toxicologists and chemists

Risk Assessment: Extractables/Leachables

- Three steps:
 - 1. Extractable/leachable identification information provided by chemist to toxicologist
 - 2. Preliminary risk assessment done by toxicologist
 - 3. If more rigorous risk assessment needed, then more detailed identification and dosage information should be requested by toxicologist from chemist

Application of Risk Assessment & Thresholds (1)

- PQRI L&E Working Group undertook mock safety qualification to assess process
- Performed risk assessment on extractables > AET
 - Extractables from elastomer
 - No leachable data were available
- Risk assessment consisted of only SAR
 Identified compounds with and without alerts
- Assumed different TDIs for compounds
- Using decision tree, applied thresholds to compounds with different toxicity profiles

Application of Risk Assessment & Thresholds (2)

- Extractable dataset
 - Sulfur-cured elastomer extracted with methylene chloride
 - 66 total extractables > AET identified by GC/MS
 - 29 compounds with confirmed or confident structures
 - Confirmed: matched with reference standards
 - Confident: precluded all but most closely related compounds

Application of Risk Assessment & Thresholds (3)

- SAR Analysis
 - Software
 - DEREK (Pfizer) on 29 compounds
 - Multicase (FDA) on 26 compounds
 - Compared DEREK and Multicase results for 26 compounds, based on:
 - Carcinogenicity
 - Mutagenicity
 - Skin sensitization

Application of Risk Assessment & Thresholds (4)

SAR Results:

Alert	No Alert	Alert Both	Alert	Alert Multicase
	Both		DEREK Only	Only
Carcinogen	17	3	5	1
Mutagen	25	1	0	0
Skin Sensitizer	18	0	4	4

Application of Risk Assessment & Thresholds (5)

- 1. Risk assessment of leachables > SCT
 - 1. SAR
 - 2. Literature review of compounds with alerts
- 2. Based on risk assessment, decide which compounds need further risk assessment
- 3. Questions for chemist about compounds for further risk assessment:
 - 1. Is level of structural information sufficient?
 - 2. What is TDI of leachable?

Application of Risk Assessment & Thresholds (6)

- 1. Is level of structural information sufficient?
 - Ideally leachables have "confirmed" structures
 - Based on comparison with reference standards
 - If only "confident" or "tentative" structures, then ask chemist for best identification information possible
 - If new information provides new structure, then rerun SAR analysis and literature review

Application of Risk Assessment & Thresholds (7)

- 2. What is the total daily intake (TDI) of leachable?
 - Request information from chemist on:
 - Concentration of the leachable in drug product
 - Drug product dosage
 - Drug product potency

Application of Risk Assessment & Thresholds (7)

- Further safety assessment is based on application of SCT and QT in decision tree
- The proposed specification for leachable in drug product, the risk assessment and other supporting data should be submitted to FDA, which may:
 - Accept proposed specification for leachable
 - Ask for further qualification
 - Establish alternate acceptable level for leachable

Application of Risk Assessment & Thresholds (8)

- Example #1: 2-chloro-methyl- thiobenzothiazole
 - Potential carcinogen based on SAR alert and literature
 - Patient TDI between SCT and QT
- Options are:
 - Reduce leachable \leq SCT or
 - Conduct risk assessment and submit to FDA, then
 - Propose higher acceptable level for leachable to FDA, or
 - Qualify leachable via:
 - Risk assessment
 - Safety studies of carcinogenicity in addition to genotoxicity and general toxicity
 - Submit risk assessment and supporting data to FDA for concurrence or a request for further qualification

Application of Risk Assessment & Thresholds (9)

- Example #2: Ethyl-4-ter-butyl phenyl ether
 - No SAR alert for carcinogenicity, mutagenicity, or sensitization
 - Patient TDI > QT
- Options are:
 - Reduce leachable \leq QT or
 - Conduct risk assessment and submit to FDA, then
 - Propose higher acceptable level for leachable to FDA or
 - Qualify leachable via:
 - Risk assessment
 - Safety studies of genotoxicity and general toxicity
 - Submit risk assessment and supporting data to FDA for concurrence or a request for further qualification

Summary

- Safety qualification process provides clear guidelines and options for leachables based on:
 - Leachable toxicity properties
 - Patient total daily intake (TDI)
- Risk assessment is needed for:
 - Component selection
 - Assessment of extractables
 - Assessment of leachables
- Toxicologists, chemists, and material scientists should collaborate from the start of development
 - Allows for early identification of compounds of potential concern, thereby saving time and resources.