PQRI workshop on "Sample Sizes for Decision Making in New Manufacturing Paradigms

Focus Area: Blend Uniformity

Fernando Muzzio, Professor II Director, ERC-SOPS Rutgers University Department of Chemical and Biochemical Engineering, 98 Brett Road, Piscataway, NJ 08854

Outline

- Rules of Engagement
- Blend Uniformity or Content Uniformity?
- Blend uniformity issues
 - What are we trying to see
 - How much data do we need?
 - What type of data do we need?
- Thief sampling
 - Advantages (?) and limitations (@#\$%!!!!)
 - Case studies
- Stratified sampling of tablets and capsules
 - Advantages (!!!) and limitations (?)
- PAT approaches
 - What are we trying to see?

Rules of Engagement

- Goal: promote a dialogue, leading to a consensus, regarding criteria for making the correct choice of blend characterization methods
- Let us take a science/engineering approach
 - Meaningful measurements
 - Variability sources understood
 - Freedom to use the best performing/most appropriate technology
- Let us ignore unscientific agendas
- Let us ignore regulatory legacy
 - BU and CU, in this talk, mean the actual extent of phenomenon, not the USP/FDA legacy methods for in process and release testing

BU or CU?

- We measure BU because it affects CU. Job 1 is to assure CU
- If we measure BU properly, we can
 - Diagnose and mitigate causes of variability
 - Optimize blending, granulation, milling...
- If we go beyond BU (and measure blend microstructure), we can
 - Understand effect of microstructure on cohesion, hydrophobicity, compressibility, hardness, dissolution...
 - Support RTR
- We can get both BU and CU from the same measurements – but it is usually too late to control process outcome

Ideal situation

- BU method is a choice driven by blend and process characteristics, not a prescription driven by legacy
- BU measurement is representative and extensive enough to support statistically significant conclusions about mixing performance and variability sources and mechanisms (measurement systems problem)
- BU measurement is instantaneous (control problem)
- Pharmaceutical scientists and regulators understand what the measurements mean
- Choice of method and mode of implementation are driven by science

ENGINEERING RESEARCH CENTER FOR STRUCTURED ORGANIC PARTICULATE SYSTEMS RUTGERS UNIVERSITY PURDUE UNIVERSITY NEW JERSEY INSTITUTE OF TECHNOLOGY UNIVERSITY OF PUERTO RICO AT MAYAGUEZ

Some real world problems

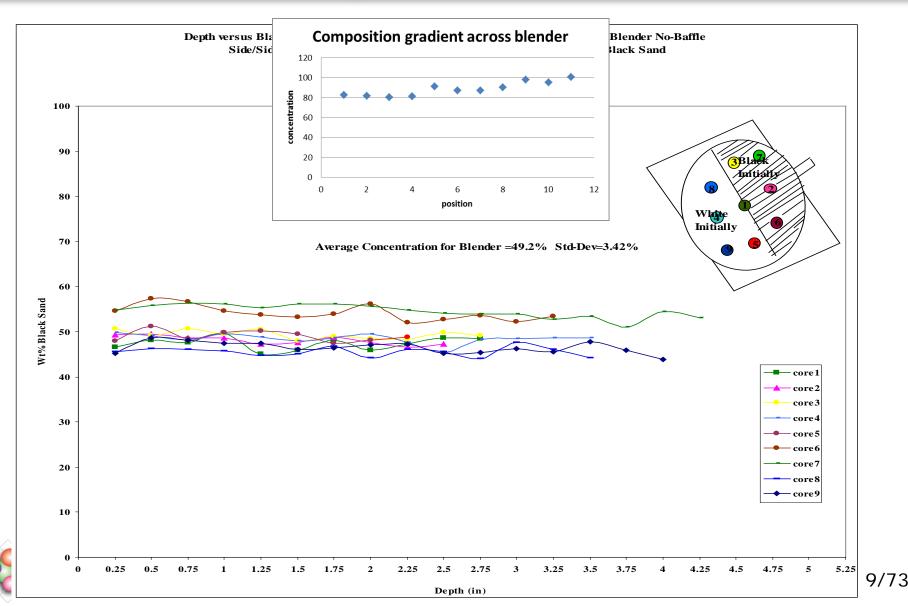
- Thief sampling has many sources of error (including bias), produces very little data, and is not instantaneous.
- Stratified sampling is not instantaneous and it is the most labor intensive methods
- Many PAT approaches are inaccurate, instrument dependent, not representative, and they are difficult to validate.
- Many of the people using these approaches, or regulating the use of these approaches, have limited understanding of the scientific issues
- This is great for consultants!

ENGINEERING RESEARCH CENTER FOR STRUCTURED ORGANIC PARTICULATE SYSTEMS RUTGERS UNIVERSITY PURDUE UNIVERSITY NEW JERSEY INSTITUTE OF TECHNOLOGY

UNIVERSITY OF PUERTO RICO AT MAYAGÜEZ

Blend uniformity: real issues

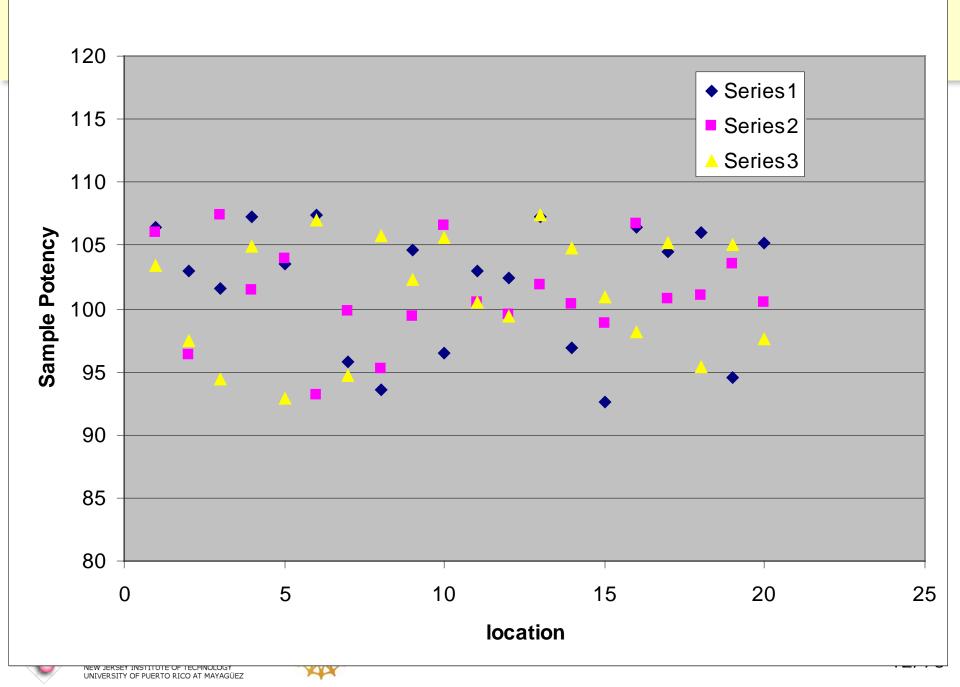
- Insufficient blending
- Segregation
- Agglomeration


ENGINEERING RESEARCH CENTER FOR STRUCTURED ORGANIC PARTICULATE SYSTEMS

Insufficient mixing:

- Scenario 1: Macroscopic heterogeneity
- Characteristic Symptoms:
 - Composition gradients across blender
 - Time-dependent potency of tablets and capsules
 - RSD decreases with time but is independent of sample size
- Causes:
 - Inadequate loading
 - Excessive blender filling
 - Mixing time too short (often due to incorrect scale-up)
- How to diagnose: need to resolve spatial gradient inside blender, or temporal gradient at the blender discharge
- Measurement requirements: System must be able to resolve spatial and/or temporal gradient in statistically significant manner

Example of insufficient mixing due to bad loading


Insufficient mixing:

- Scenario 2: Coarse cohesive blend
- Characteristic Symptoms:
 - Blend has high RSD but does not display gradients or outliers
 - RSD decreases with time and may be sample size dependent
 - Tablet or capsule potency does not display time-dependent pattern
- Causes:
 - Cohesion of the blend or the API
 - Mixing time too short (Not enough shear)
 - Characteristic of small scale mixers or low shear mixers
- How to diagnose: need to demonstrate lack of spatial gradient inside blender, and/or lack of temporal gradient at the blender discharge
- Measurement requirements: System must be able to resolve spatial and/or temporal gradients in statistically significant manner

Examples – Coarse Mixture

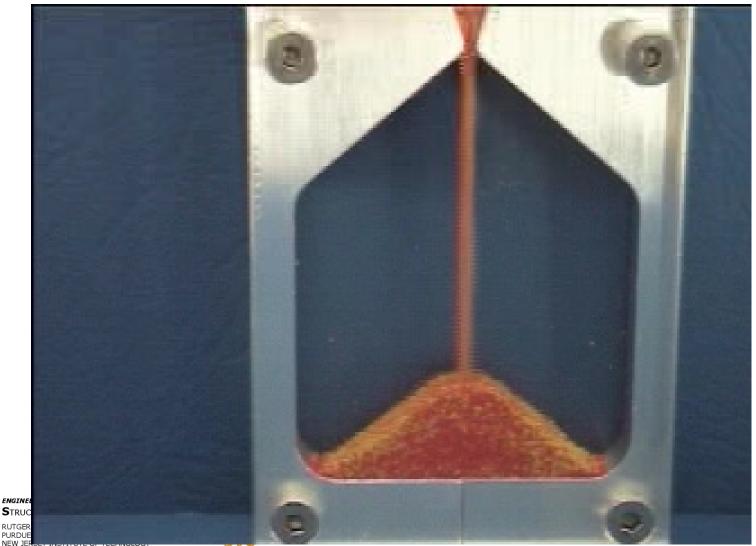
Set 1 - POWD					NS - SHOW	S THE EI	FECT OF	AVERAGI	NG
Case1: Rando									
SD from inc									
verage of lo	ocation RS	D's lower t	han RSD c	of individua	al values b	ut higher	than RSD	of average	ges
ocation	Sample1	sample2	sample3	Location A	vg				
1	106.4708	105.9772	103.4237	105.2906					
2	103.0394	96.30543	97.44525	98.93001					
3	101.6582	107.3447	94.42169	101.1416					
4	107.2126	101.4732	104.9737	104.5532					
5	103.5762	103.9814	92.80578	100.1211					
6	107.3996	93.14939	106.963	102.504					
7	95.82761	99.77068	94.67383	96.75737					
8	93.54683	95.202	105.7024	98.15039					
9	104.6373	99.3774	102.2482	102.0876					
10	96.52324	106.5639	105.6518	102.913					
11	102.9206	100.4219	100.5412	101.2946					
12	102.3844	99.46263	99.31681	100.388					
13	107.2248	101.8736	107.4488	105.5158					
14	96.8296	100.291	104.7572	100.6259					
15	92.57886	98.82437	100.9265	97.44326					
16	106.4739	106.6654	98.16339	103.7676					
17	104.5106	100.7172	105.1664	103.4647					
18	106.0105	101.0751	95.34597	100.8105					
19	94.5878	103.5672	105.0579	101.0709					
20	105.2407	100.5285	97.56177	101.1103					
ENGINEERING RESEAR									
A STRUCTURED ORGA	NIC PARTICULATE			101.397	Mean Avg				
SPUENCESTY INTERSTUTION	- OF TECHNOLOGY	0.043922	X	0.024117	RSD Avg				

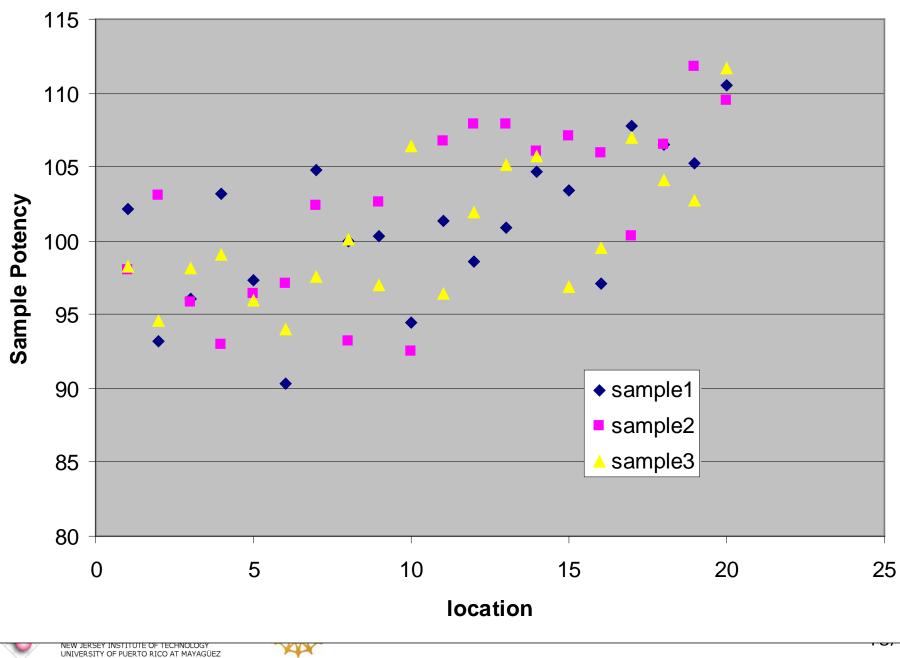
11/73

								·/	<u> </u>	1
	2	3	4	5	6	7	8	9) 10) 11
103.039	J3519	101.6582	107.2126	103.5762	2 107.3996	95.82761	93.54683	104.6373	96.52324	102.9206
96.3054	12869	107.3447	101.4732	103.9814	93.14939	99.77068	95.202	99.3774	106.5639	100.4219
97.4452	25284	94.42169	104.9737	92.80578	106.963	94.67383	105.7024	102.2482	2 105.6518	8 100.5412
								1		
98.9300	J1115	101.1416	104.5532	100.1211	102.504	96.75737	98.15039	102.0876	102.913	101.2946
0.0364	43119 [•] (0.064039	0.027667	0.063308	0.079063	0.027622	0.067166	0.025798	0.053953	0.013914
										· /
13		14	15	16	17	18	19 2	20		
107.2248	96.82	.96 92.578	386 106.47	/39 104.51	06 106.01	05 94.58	78 105.240	7		
101.8736	100.29	.91 98.824	137 106.66	54 100.71	72 101.07	51 103.56	72 100.528	,5		
107.4488	104.757	72 100.92	265 98.163	J39 105.1F	64 95.345	97 105.05	79 97.5617	7		
105.5158	100.625	.59 97.443	326 103.76	76 103.4۴	100.81 🖣 47	05 101.07	09 101.110	/3	avg of loc	ation RSDs
0.029912	0.03949	97 0.0445	558 0.0467	′81 0.0232	215 0.0529	43 0.0560	38 0.03829	/8	0.04114	3
	96.3054 97.4452 98.9300 0.0364 13 107.2248 101.8736 107.4488 105.5158	103.0393519 96.30542869 97.44525284 98.93001115 0.03643119 107.2248 96.829 101.8736 100.29 107.4488 104.75 105.5158	103.0393519 101.6582 96.30542869 107.3447 97.44525284 94.42169 98.93001115 101.1416 0.03643119 0.064039 13 14 107.2248 96.8296 92.578 101.8736 100.291 98.824 107.4488 104.7572 100.92	103.0393519 101.6582 107.2126 96.30542869 107.3447 101.4732 97.44525284 94.42169 104.9737 98.93001115 101.1416 104.5532 0.03643119 0.064039 0.027667 13 14 15 107.2248 96.8296 92.57886 106.47 101.8736 100.291 98.82437 106.66 107.4488 104.7572 100.9265 98.163	103.0393519 101.6582 107.2126 103.5762 96.30542869 107.3447 101.4732 103.9814 97.44525284 94.42169 104.9737 92.80578 98.93001115 101.1416 104.5532 100.1211 0.03643119 0.064039 0.027667 0.063308 107.2248 96.8296 92.57886 106.4739 104.51 101.8736 100.291 98.82437 106.6654 100.71 107.4488 104.7572 100.9265 98.16339 105.16 105.5158 100.6259 97.44326 103.7676 103.46	103.0393519 101.6582 107.2126 103.5762 107.3996 96.30542869 107.3447 101.4732 103.9814 93.14939 97.44525284 94.42169 104.9737 92.80578 106.963 98.93001115 101.1416 104.5532 100.1211 102.504 0.03643119 0.064039 0.027667 0.063308 0.079063 13 14 15 16 17 107.2248 96.8296 92.57886 106.4739 104.5106 106.010 101.8736 100.291 98.82437 106.6654 100.7172 101.075 107.4488 104.7572 100.9265 98.16339 105.1664 95.3455 105.5158 100.6259 97.44326 103.7676 103.4647 100.810	103.0393519 101.6582 107.2126 103.5762 107.3996 95.82761 96.30542869 107.3447 101.4732 103.9814 93.14939 99.77068 97.44525284 94.42169 104.9737 92.80578 106.963 94.67383 98.93001115 101.1416 104.5532 100.1211 102.504 96.75737 0.03643119 0.064039 0.027667 0.063308 0.079063 0.027622 13 14 15 16 17 18 107.2248 96.8296 92.57886 106.4739 104.5106 106.0105 94.583 101.8736 100.291 98.82437 106.6654 100.7172 101.0751 103.565 107.4488 104.7572 100.9265 98.16339 105.1664 95.34597 105.055 105.5158 100.6259 97.44326 103.7676 103.4647 100.8105 101.070	103.0393519 101.6582 107.2126 103.5762 107.3996 95.82761 93.54683 96.30542869 107.3447 101.4732 103.9814 93.14939 99.77068 95.202 97.44525284 94.42169 104.9737 92.80578 106.963 94.67383 105.7024 98.93001115 101.1416 104.5532 100.1211 102.504 96.75737 98.15039 0.03643119 0.064039 0.027667 0.063308 0.079063 0.027622 0.067166 13 14 15 16 17 18 19 20 107.2248 96.8296 92.57886 106.4739 104.5106 106.0105 94.5878 105.2407 101.8736 100.291 98.82437 106.6654 100.7172 101.0751 103.5672 100.5288 107.4488 104.7572 100.9265 98.16339 105.1664 95.34597 105.0579 97.5617 105.5158 100.6259 97.44326 103.7676 103.4647 100.8105 101.0709 101.1103	103.0393519 101.6582 107.2126 103.5762 107.3996 95.82761 93.54683 104.6373 96.30542869 107.3447 101.4732 103.9814 93.14939 99.77068 95.202 99.3774 97.44525284 94.42169 104.9737 92.80578 106.963 94.67383 105.7024 102.2482 98.93001115 101.1416 104.5532 100.1211 102.504 96.75737 98.15039 102.0876 0.03643119 0.064039 0.027667 0.063308 0.079063 0.027622 0.067166 0.025798 13 14 15 16 17 18 19 20 107.2248 96.8296 92.57886 106.4739 104.5106 106.0105 94.5878 105.2407 101.8736 100.291 98.82437 106.6654 100.7172 101.0751 103.5672 100.5285 107.4488 104.7572 100.9265 98.16339 105.1664 95.34597 105.0579 97.56177 105.5158 100.6259 97.44326 103.7676 103.4647 100.8105 101.0709	103.0393519 101.6582 107.2126 103.5762 107.3996 95.82761 93.54683 104.6373 96.52324 96.30542869 107.3447 101.4732 103.9814 93.14939 99.77068 95.202 99.3774 106.5639 97.44525284 94.42169 104.9737 92.80578 106.963 94.67383 105.7024 102.2482 105.6518 98.93001115 101.1416 104.5532 100.1211 102.504 96.75737 98.15039 102.0876 102.913 0.03643119 0.064039 0.027667 0.063308 0.079063 0.027622 0.067166 0.025798 0.053953 0.027622 0.067166 0.025798 0.053953 0.025798 0.053953 0.027622 0.067166 0.025798 0.053953 0.025798 0.053953 0.027622 0.067166 0.025798 0.053953 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.053953 0.025798 0.025798 0.053953 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.053953 0.025798 0.025798 0.053953 0.025798 0.053953 0.025798 0.053953 0.025798 0.053953 0.053953 0.053953 0.053953 0.025798 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.053953 0.05295 0.053953 0.053

ANOVA						
ource of Variatio	SS	df	MS	F	P-value	F crit
Between Groups	340.8429	19	17.9391	0.86518	0.623243	1.852893
Within Groups	829.3814	40	20.73453			
Total	1170.224	59				
Locations are s	tatictically	cimilar				

Locations are statistically similar


STRUCTURED ORGANIC PARTICULATE SYSTEMS


Segregation

- Characteristic Symptoms:
 - Composition gradients across blender
 - Time-dependent potency of tablets and capsules
 - RSD does not decrease with time and is independent of sample size
 - If process is robust, effect is significant across batches
- Causes:
 - Formulation (particle size, density, shape)
 - Uncontrolled blender discharge
- How to diagnose: need to resolve spatial gradient inside blender, or temporal gradient at the blender discharge
- Measurement requirements: System must be able to resolve spatial and/or temporal gradient in statistically significant manner

Video de segregación (Schulze)

UNIVERSITY OF PUERTO RICO AT MAYAGÜEZ

Location A	nalysis										
1	2	3	4	5	6	7	8	9	10	11	12
102.1613	93.14619	96.11046	103.1942	97.38091	90.28382	104.7371	99.95092	100.267	94.42307	101.3268716	98.53565
98.0293	103.0861	95.82992	92.97771	96.46062	97.1001	102.4056	93.14839	102.625	92.54652	106.691839	107.8806
98.24226	94.52864	98.11544	99.10535	95.9349	93.94717	97.51275	100.0957	96.99664	106.3679	96.40154083	101.8626
	6										
99.47761	96.92031	96.68528	98.42575	96.59214	93.77703	101.5518	97.73166	99.96288	97.77916	101.4734171	102.7596
0.023388	0.055554	0.012892	0.052243	0.007577	0.036377	0.036307	0.04062	0.028275	0.076673	0.050719826	0.046094

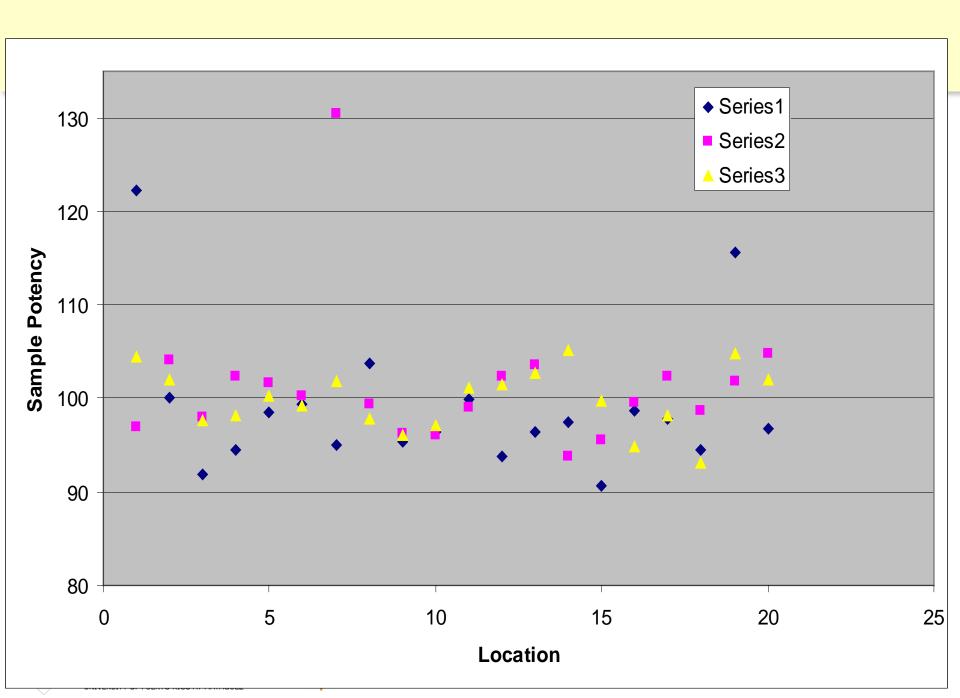
13	14	15	16	17	18	19	20		
100.9177	104.6478	103.383	97.13934	107.7914	106.4951	105.2498	110.48		
107.8351	106.0472	107.1061	105.9849	100.2845	106.4927	111.7424	109.4915		
105.1271	105.7346	96.89972	99.4883	106.9419	104.1458	102.7558	111.6179		
104.6266	105.4765	102.4629	100.8709	105.0059	105.7112	106.5826	110.5298	average of lo	ocation RSDs
0.033316	0.006964	0.050409	0.045424	0.039149	0.012824	0.043527	0.009627	0.035398	

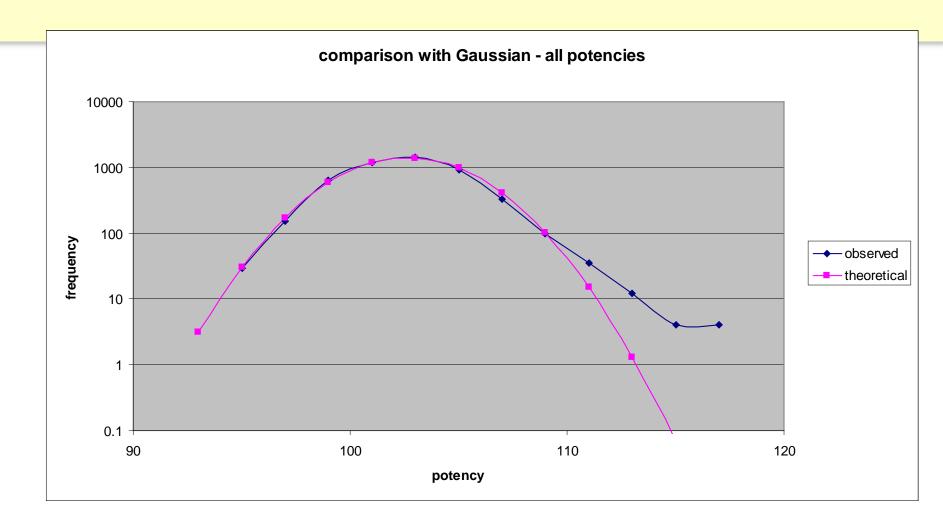
ANOVA is used to analyze variability between locations

Anova: Sin	gle Factor				
SUMMARY	/				
Groups	Count	Sum	Average	Variance	
Column 1	3	298.4328	99.47761	5.412861	
Column 2	3	290.7609	96.92031	28.99044	
Column 3	3	290.0558	96.68528	1.553711	
Column 4	3	295.2772	98.42575	26.44044	
Column 5	3	289.7764	96.59214	0.535715	
Column 6	3	281.3311	93.77703	11.63712	
Column 7	3	304.6555	101.5518	13.59439	
Column 8	3	293.195	97.73166	15.76004	
Column 9	3	299.8886	99.96288	7.988986	
Column 10	3	293.3375	97.77916	56.20509	
Column 11	3	304.4203	101.4734	26.48867	
Column 12	3	308.2789	102.7596	22.43557	
Column 13	3	313.8799	104.6266	12.15069	
Column 14	3	316.4296	105.4765	0.539543	
Column 15	3	307.3888	102.4629	26.67729	
Column 16	3	302.6126	100.8709	20.99469	
Colump 17	ENGINEEA CTDUCT	ING RESEARCH	105.00 59	46.89935	
Column 18		317,1335	105.7112	1.837867	Z
Column 19		NI39917479	106.5826	21.52236	Z
Column 20	UNIVER 3 I	TY33195894	1CO1/110!5298	^z 1.132315	

ANOVA						
rce of Varia	SS	df	MS	F	P-value	F crit
Between G	1008.501	19	53.07902	3.329956	0.000669	1.852893
Within Gro	637.5943	40	15.93986			
Total	1646.096	59				
Anova hot	woon loop	tions: Loo	ations ADE	cignifican	thy differen	

Anova between locations: Locations ARE significantly different


Agglomeration

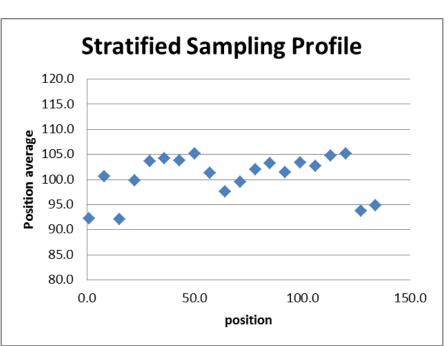

- Characteristic Symptoms:
 - Isolated "hot spots" where samples (or individual tablets) show significant superpotency
 - No "low fliers"
 - High values are outside the normal population (they show up as outliers)
 - RSD decreases with sample size
- Causes:
 - API not properly de-agglomerated
 - API agglomerates in blender due to electrostatics, moisture, MgSt softening, etc
- How to diagnose: perform a large number of measurements. Determine both the underlying normal distribution and detect the outliers.
- Measurement requirements: System must be able to measure a large number of values (several hundred)

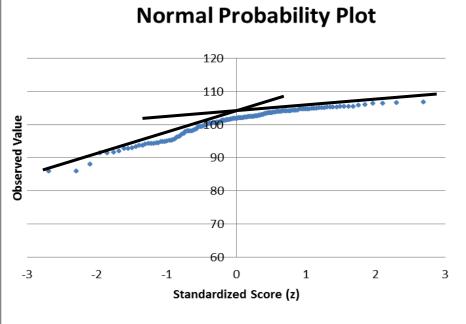
	Set 3 - PO	Set 3 - POWDER SAMPLES WITH AGGLOMERATES - SH									
	Case 3: M	ixture with	n Agglome	rates							
	Location	Sample1	sample2	sample3	Location A	vg					
	1	122.3123	96.95018	104.5146	107.9257						
	2	100.1209	104.0918	101.9234	102.0454						
	3	91.79322	98.0125	97.63952	95.81508						
	4	94.52912	102.2845	98.09353	98.30239						
	5	98.43445	101.6035	100.2304	100.0895						
	6	99.40265	100.2777	99.20356	99.62797						
	7	94.96024	130.4	101.8727	109.0777						
	8	103.6684	99.34741	97.77706	100.2643						
	9	95.33494	96.24522	96.09863	95.89293						
	10	96.44071	96.07732	97.18798	96.56867						
	11	99.93404	99.0759	101.1966	100.0689						
	12	93.86015	102.3704	101.4504	99.22699						
	13	96.34526	103.5954	102.6602	100.867						
	14	97.45158	93.79322	105.088	98.77759						
	15	90.73452	95.51705	99.80418	95.35192						
	16	98.72903	99.59913	94.88759	97.73858						
	17	97.80984	102.2983	98.15117	99.41976						
	18	94.50889	98.68102	93.11534	95.43508						
	19	115.622	101.8041	104.7755	107.4005						
	20	96.82955	104.7974	102.069	101.232						
ENGINEERING RESEARCH CENT			100.0564		100.0564	Mean Avg					
STRUCTURED ORGANIC PA RUTGERS UNIVERSITY PURDUE UNIVERSITY					4.010655						
NEW JERSEY INSTITUTE OF TEC UNIVERSITY OF PUERTO RICO A	RSD Ind		0.063937		0.040084	RSD Avg					

19/73

engineering research center for Structured Organic Particulate Systems

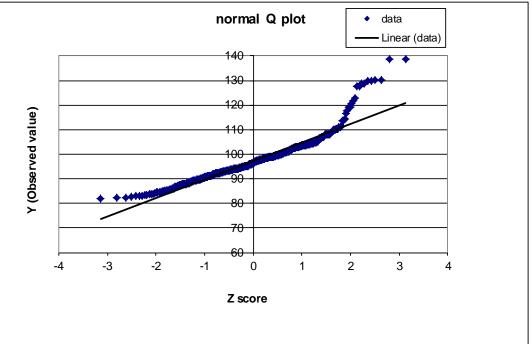
A useful tool: the q plot (normal probability plot)

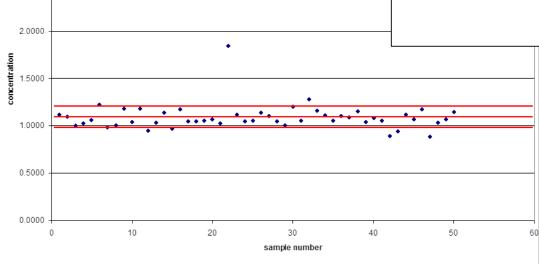

 Standard score: $z = \frac{y - \bar{y}}{s}$ z is the normal score corresponding to the percentile of y


Thus, a plot of y vs. z has a slope of s and an intercept of \overline{y}

1	100.6	SUMMARY OUTPUT						
2	99.7							
		Degraphics Statist	iaa					
3	100.3 97.3	Regression Statist	0.043947					
5	100.9 104.6	R Square Adjusted R Square	0.001931					
			-0.01803					
7	99.7 100.4	Standard Error Observations	2.76406 52					
		Observations	52					
9	100.6							
10		ANOVA	.15	00	140		· · (·	-
11	103.6	Deserves	df	SS	MS		ignificance	F
12		Regression	1	0.739205		0.096754	0.757053	
13		Residual		382.0014				
14		Total	51	382.7406				
15	112.4							
16	100.4		Coefficients				Lower 95%	
17		Intercept	102.1029			3.85E-65		
18		X Variable 1	0.007944	0.02554	0.311053	0.757053	-0.043354	0.059242
19	101.3							
20	98.6							
21	99.9							
22		PROBABILITY OUTPUT				normsinv(L	363/100)	
23	103.1							
24	102.7	Percentile	Y	Ζ				
25	109.7	0.961538462	97.3	-2.34103				
26	101.2	2.884615385	98.6	-1.89803				
27	104.4	4.807692308	99.7	-1.66379				
28	102	6.730769231	99.7	-1.49615				
29	101	8.653846154	99.8	-1.36238				
30	102.5	10.57692308	99.9	-1.24935				
31	101	12.5	100.3	-1.15035				
32	102.3	14.42307692	100.3	-1.0615				
33	106.2	16.34615385	100.3	-0.98033				
34	101.8	18.26923077	100.4	-0.90515				
35	101.6	20.19230769	100.4	-0.83477				
36	106.6	22.11538462	100.6	-0.7683				
37	101.6	24.03846154	100.6	-0.70507				
38	100.7	25.96153846	100.7	-0.64453				22/73

Examples from the real world


A large tablet data set from a single batch, displaying the multi-slope pattern characteristic of segregation or incomplete macromixing



Examples from the real world

Multi-batch tablet dataset containing several thousand measurements, displaying agglomeration fingerprint

Measurement methods: thief sampling

- Advantages
 - Cheap to implement
 - Easily accepted by regulators
 - Measures variability at unit dose level
- Disadvantages
 - Bias (samples can be consistently subpotent or consistently superpotent)
 - API can stick to thief
 - Small number of samples (10-30), combined with large sampling error, produce unreliable results with low statistical significance
 - Slow, useless for control
 - Exposes operators to powder
 - Method does not detect segregation after blending
 - Hard (or impossible) to resolve spatial gradients or detect agglomerates
 - Hard (or impossible) to validate method
 - Difficult to assure consistent location sampling

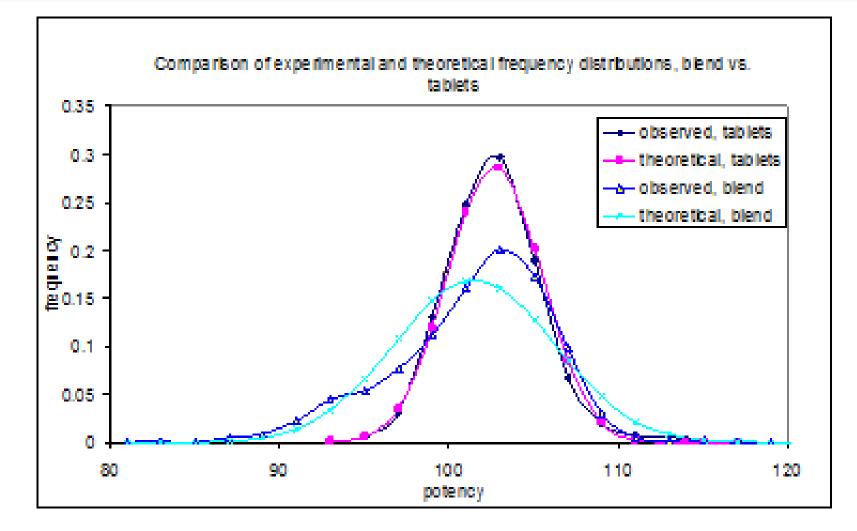
Measurement methods: stratified sampling of tablets and/or capsules

- Advantages
 - Cheap, easy to implement
 - Highly accurate, unbiased
 - Highly representative (devoid of sampling problems)
 - Produces large number of samples, statistically significant results
 - Allows to discriminate sources of variability detects gradients and agglomerates
 - Does not expose operators
 - Easy to validate
 - Measures variability at unit dose level
 - It is an effective approach for validating sampling and PAT!
- Disadvantages
 - Slow, useless for control
 - Not readily accepted by some regulators

PAT methods

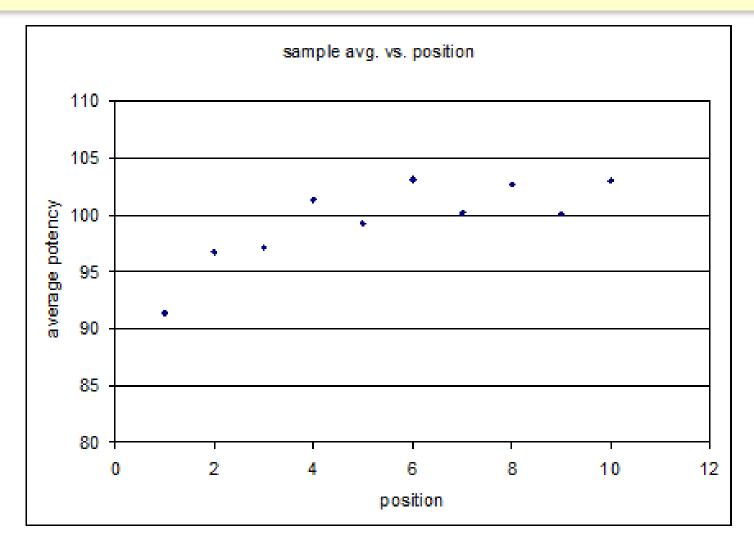
- Advantages
 - Fast, useful for control
 - Produces large amount of statistically significant data
 - If multiple sensors are used, can resolve spatial gradients
 - If used at the right spot, can resolve temporal gradients at discharge
 - Ideal for continuous processing
- Disadvantages
 - Can be difficult to assure sample size
 - Can be difficult to validate
 - Expensive to implement, requires expertise and maintenance
 - Sensors can get fouled
 - If samples segregate, NIR method can be difficult to establish

Case study 1: API sticking to thief


- Low drug content dry blend application
- Large number of batches (>150)
- Thief sampling of blender (12 positions)
- Large number of tablets analyzed

ENGINEERING RESEARCH CENTER FOR STRUCTURED ORGANIC PARTICULATE SYSTEMS

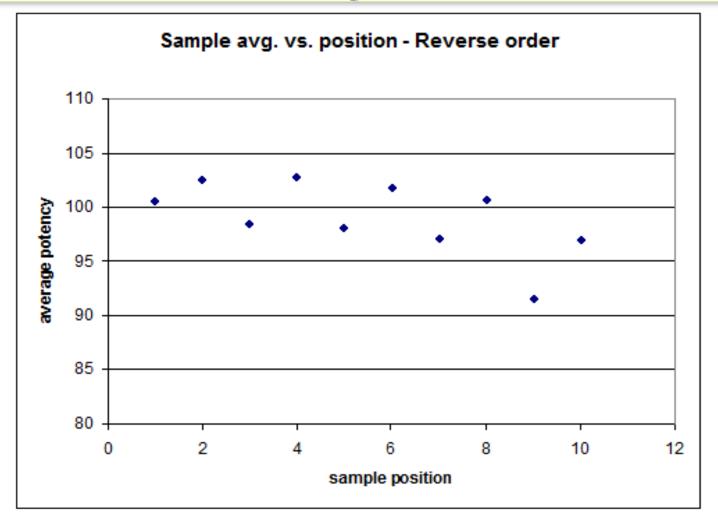
Strong deviations between samples and tablets



8

engineering research center for Structured Organic Particulate Systems

Subpotent positions in blender...



engineering research center for Structured Organic Particulate Systems

... due to API sticking in the thief for the first two samples

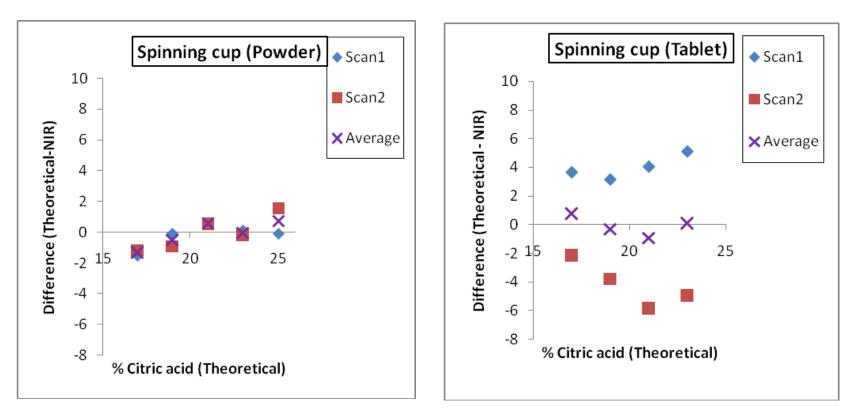
engineering research center for Structured Organic Particulate Systems

Case Study 2: comparison of NIR and thief sampling for dry beverage blend

- Application was in dry beverage mix
- Two "actives" (trisodium citrate and lemon flavor) mixed in a bin with multiple "ingredients" (flavors, preservatives), then mixed with a third "active" (citric acid) and with "major ingredients" (tea, sugar) in a continuous mixer.
- NIR methods used at the bench, and on-line for both the bin and the continuous mixer
- Samples extracted using thief sampling
- Studies examined and compared PAT method to bench analysis of thief samples

ENGINEERING RESEARCH CENTER FOR STRUCTURED ORGANIC PARTICULATE SYSTEMS RUTGERS UNIVERSITY PURDUE UNIVERSITY NEW JERSEY INSTITUTE OF TECHNOLOGY UNIVERSITY OF PUERTO RICO AT MAYAGÜEZ

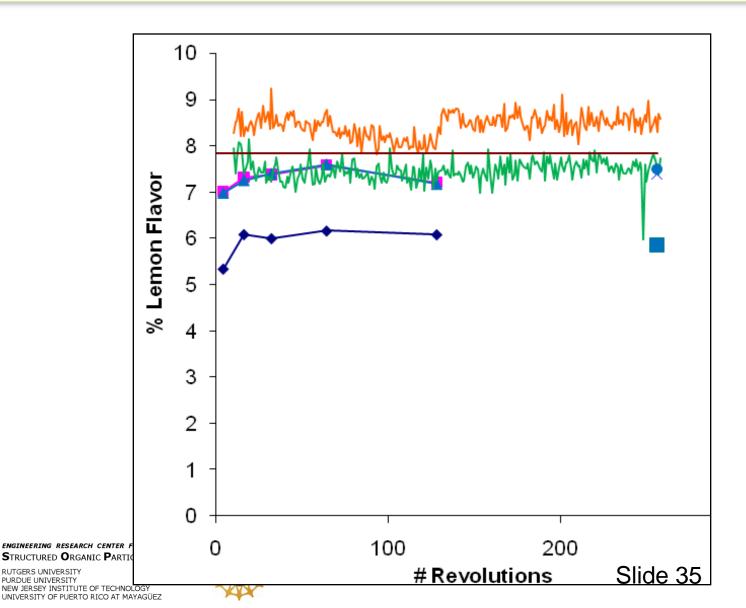
NIR was difficult


- Blend segregation was a major issue
- Samples segregated intensely, affecting NIR accuracy
- Multiple bench methods attempted
 - Repeated measures with shaking episodes in between
 - Rotating cup for powders
 - Tableting, followed by rotated tablet

ENGINEERING RESEARCH CENTER FOR STRUCTURED ORGANIC PARTICULATE SYSTEMS

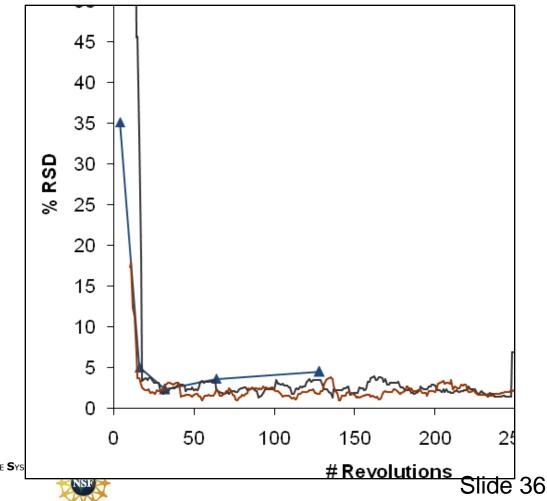
Comparison of rotating sample vs. tablet

 Tablet method was promising, but was not selected by sponsor. Work continued for powder

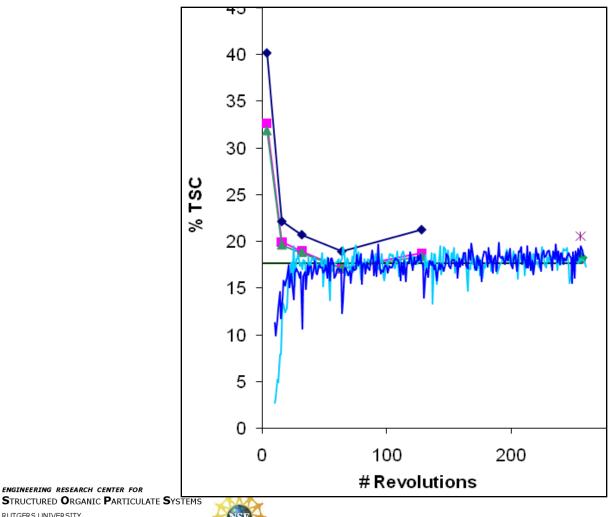

STRUCTURED ORGANIC PARTICULATE SYSTEMS RUTGERS UNIVERSITY

RUTGERS UNIVERSITY PURDUE UNIVERSITY NEW JERSEY INSTITUTE OF TECHNOLOGY UNIVERSITY OF PUERTO RICO AT MAYAGÜEZ

method


Comparison online vs. bench – mean – ingredient 1

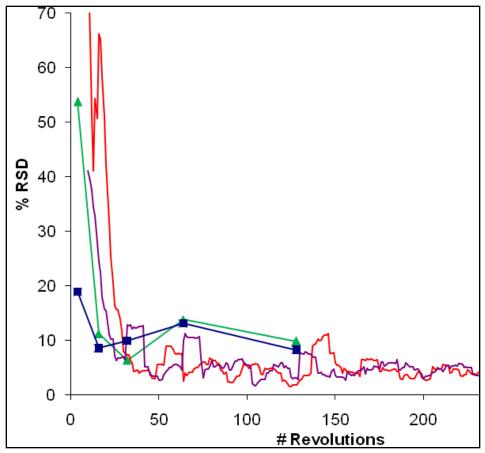
8


35/73

Comparison online vs. bench – RSD – Ingredient 1

engineering research center for Structured Organic Particulate Sys

Comparison online vs. bench – Mean – Ingredient 2


RUTGERS UNIVERSITY PURDUE UNIVERSITY NEW JERSEY INSTITUTE OF TECHNOLOGY UNIVERSITY OF PUERTO RICO AT MAYAGÜEZ

ENGINEERING RESEARCH CENTER FOR

Slide 37

Comparison online vs. bench – RSD – Ingredient 2

ENGINEERING RESEARCH CENTER FOR

STRUCTURED ORGANIC PARTICULATE SYSTEMS RUTGERS UNIVERSITY PURDUE UNIVERSITY NEW JERSEY INSTITUTE OF TECHNOLOGY UNIVERSITY OF PUERTO RICO AT MAYAGÜEZ

Slide 38

So what is the right method?

- Proposal 1: Rational approach for developing and validating methods
 - Use stratified sampling to determine mixing time, ensure that there is no segregation, rule out agglomeration
 - If company wants to use thief sampling, then use stratified sampling to validate thief sampling, ensure there is no sampling bias, etc.
 - If company wants to use PAT, use stratified sampling to validate PAT method, ensure there is no sensor bias, etc.
 - Companies should provide sound rationale for selection
 - Agency should allow flexibility

ENGINEERING RESEARCH CENTER FOR STRUCTURED ORGANIC PARTICULATE SYSTEMS RUTGERS UNIVERSITY

NEW JERSEY INSTITUTE OF TECHNOLOGY JNIVERSITY OF PUERTO RICO AT MAYAGÜEZ

So what is the right method?

- Proposal 2: Study group to determine method selection criteria and acceptance criteria
 - Convene a group of industry, agency, and academia to review the field and harvest new knowledge
 - Determine criteria for selecting a method
 - Determine proper AC for each method
 - Work out the statistics so that all methods provide equivalent assurance

ENGINEERING RESEARCH CENTER FOR STRUCTURED ORGANIC PARTICULATE SYSTEMS

