

ICH Q3D: How to Deal with Other Routes of Administration in the EU

Roland Frötschl Genetic and Reproductive Toxicology

Disclaimer

Views and opinions expressed in this presentation are my own, do not necessarily reflect the opinion of other assessors at the BfArM or other EU-competent authorities, and can not be considered as BfArM, EU or USP guidance or policy

Outline

 Guideline recommendation to determine route specific PDEs

Examples how PDEs for "other routes" may be established

ICH Q3D approach to other routes of administration

Route specific PDEs

- Established in Q3D for oral, parenteral, inhalation
- No PDEs established for other routes
- PDEs for other routes of administration need to be derived on a case by case approach

Other Routes of Administration in Q3D Derive route specific PDEs

deriving PDEs for these other routes should follow the principles established for deriving PDEs for

- oral, parenteral and inhalation
 - use oral PDE as starting point to derive PDE
 - based on scientific evaluation parenteral or inhalation PDE may be more appropriate

Approaches recommended in ICH Q3D to derive route specific PDEs

factors for modification of established PDE

- local effects to be expected?
 - yes assess if modification of PDE is necessary
 - consider doses/exposures at which local effects are expected vs. doses/exposure of AE used to set established PDE
 - no no modification of established PDE necessary
- bioavailability data of the element via the intended route available
 - compare with bioavailability by route with established PDE
 - significant difference observed and no local effects expected
 - application of correction factor to established PDE possible
 - e.g. bioavailability for route with established PDE 50% and for intended route 10% - modification factor of 5 may be applied
- before the PDE for the new route is increased compared to established PDE quality aspects may need to be considered

EMA Guideline on the specification limits for residues of metal catalysts or metal reagents (EMEA/CHMP/SWP/4446/2000)

Approaches for other routes of administration

- without proper justification, parenteral limits/PDEs should be used for pharmaceutical substances
- oral limits/PDEs may be applied if the absorption by other routes of administration is not likely to exceed the absorption following oral administration
 - for example, for cutaneous administration, oral concentration limits/PDEs are considered acceptable.

Guidance of other areas may provide relevant information for other routes of administration

e.g. for dermal applications

European Scientific Committee on Consumer Safety (SCCS)

- Note of Guidance for Testing of Cosmetic Ingredients for Their Safety Evaluation (SCCNFP/0321/00)
 - Retention factor a factor to estimate the amount of the product available for absorption through the skin
 - considers differences of use between rinse-off and non rinse-off products e.g.
 - Shampoos rinse-off
 - Deodorants non-rinse-off

Some retention factors and calculated daily exposure

product	estimated amount applied	Retention factor	Calculated daily exposure g/d
Shower gel	18.67 g	0.01	0.19
Face cream	1.54 g	1	1.54
Lip stick	0.057 g	1	0.057
Deodorant non-spray	1.5 g	1	1.5
Toothpaste	2.75 g	0.05	0.138

from SCCS Note for Guidance for Testing of Cosmetic Ingredients for Their Safety Evaluation (SCCS/1501/12)

Examples for deriving route specific PDEs

Example 1: Suppository for rectal application

Scientific advice procedure (before ICH Q3A sign off)

- developed for treatment of chronic colorectal disease
- daily treatment
- daily dose 1000 mg
- requested spec. limits for metal catalyst residues

elem		conc		daily intake
Pt	≤	10 ppm	≡	10 μg/d
Mn	≤	20 ppm	≡	20 μg/d
Ni	≤	30 ppm	≡	30 μg/d
Mo	≤	25 ppm	≡	25 μg/d

Example 1: Suppository for rectal application (cont)

PDEs according to "EMA metal catalysts" and ICH Q3A

elem	PDE μg/d oral		PDE μg/d parentera		
	EMA	ICH	EMA	ICH	
Pt ≤	100	100	10	10	
Mn≤	2500	nd	250	nd	
Ni ≤	250	200	25	20	
Mo≤	250	3000	25	1500	

Example 1: Suppository for rectal application (cont)

- local toxic effects are not expected at these level of elemental impurities
- no additional data on the rectal absorption of elements were provided
- according to the EMA guidance on metal catalysts parenteral PDEs may be used as starting point
- BfArM advice:
 - the product is for rectal application and absorption may be expected not to be higher than by oral application
 - however without further data the recommendation would be to use the parenteral PDEs – to have a safe side approach
 - all limits except for Ni are acceptable for Ni the limit should be set to 25 ppm

Example 1: Suppository for rectal application (cont)

would the advice be different now?

- Mn did not remain in ICH Q3D due to low toxicity
 - Mn would probably not anymore be part of the advice
- PDE for Ni is tighter in ICH Q3D: parenteral PDE 20 μg/d
- ICH Q3D recommends oral PDE as a starting point for deriving route specific PDEs
- my guess would be the acceptance of the 30 ppm limit for Ni for the rectal route of administration
 - although no additional data on rectal absorption have been presented it is unlikely that it will be higher than by oral administration

Example 1: Suppository for rectal administration

data variations

- Absorption studies in disease model animals show enhanced absorption for Pt and Ni compared to wt via oral administration
 - in this case parenteral limits would apply
 - the limits for Ni would have to be reduced to 20 ppm in the drug product

Example 2: Dermal gel intended for treatment of severe burns

- open damaged skin
- short term treatment ≤ 5 single treatments on consecutive days
- treatment area ≤ 15 % of total body area
- applied amount of gel ≤ 10 gr
- metals identified in finished product

elem	conc	max daily exposure
Pb	3 ppm	30 μg
As	6 ppm	60 μg
Ni	10 ppm	100 μg

Example 2: Dermal gel intended for treatment of severe burns (cont)

limits according to EMA metal catalysts" and ICH Q3A

elem	PDE μg/d oral			PDE μg/d parenteral		
	EMA	ICH	exc by	EMA	ICH	exc by
Pb ≤	na	5	6	na	5	6
As ≤	na	15	4	na	15	4
Ni ≤	250	200	0.5	25	20	5

Example 2: Dermal gel intended for treatment of severe burns (cont)

points to be considered

- PDEs calculated for daily life long exposure
- short term exposure in this case ≤ 5 days
- higher PDEs possible for short term exposure
 - e.g. 30 day or less
- no local toxicity observed dose/cm² is low
- skin barrier severely damaged
 - without absorption data the precautionary approach is using parenteral PDEs

Example 2: Dermal gel intended for treatment of severe burns (cont)

- the higher levels of potential daily intake of elemental impurities were accepted
 - short term application up to 5 times max cummulative exposure is very low
 - no local toxicity

Example 3: Creme for local parasite treatment

- identified elemental impurities: Pb and As
- no penetration enhancers present
- Remains on the skin
- daily dose 1 g
 - Retention factor = 1
 - dermal absorption of Pb 0.3% (Moore et al. 1980)
 - dermal absorption of arsenic 3 % (US EPA 2005)
 - No local effects expected
- consider oral PDEs as starting point
 - oral PDE Pb = 5 μg/d
 - oral PDE As = $15 \mu g/d$

Example 3: shampoo for local parasite treatment

- acceptable limit for Pb
 - ADE: $5\mu g/d / 1 / 0.003 = 1667 \mu g/d$
- acceptable limit for As
 - ADE: $15 \mu g/d / 1 / 0.03 = 500 \mu g/d$
- concentration limits
 - Pb: $1667 \mu g/d / 1000 mg/d = 1.67 \mu g/mg = 1670 ppm$
 - As: $500 \mu g/d / 1000 mg/d = 0.5 \mu g/mg = 500 ppm$

Example 4: Elemental impurity with local toxicity

Drug product for i.m. injection

- route specific local toxicity data for the element: serious inflammation at site of application in 4 week study in monkeys
- NOEL 3.5 mg/kg/d when applied once a week
- Calculation of PDE by applying modifying factors

adjust for weekly dosing

acceptable PDE =
$$(3.5 \text{ mg/kg/d} / 7 * 50) / (3 * 10 * 10 * 1)$$

$$PDE = 7 \mu g/d$$

if parenteral PDE is not lower than parenteral PDE applies



