2nd FDA/PQRI Conference on Advancing Product Quality

Generic Pharma Perspective on the Identification of Critical Quality Attributes and Critical Process Parameters

Bruce D. Johnson, Ph.D. Vice President Consumer Healthcare R&D

Perrigo

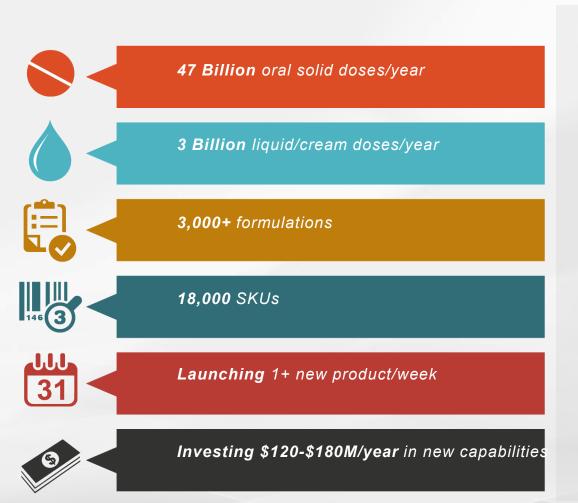
October 6, 2015

Outline

- □ Introduce Perrigo
- □ Mandate of QbD for the Generic Pharmaceutical Industry
 - **D** Pharmaceutical Development Differentiators Generic vs. Innovator
 - □ Impact to ANDAs
- Implementation Perspectives
 - **CPPs & CQAs**
 - **Risk Assessment**
- Case Study

Global Presence

Positioned to Capture Expanding Global Healthcare Needs



*CY15 Pro Forma, Includes only 9 months for Omega acquisition translated at €1:\$1.09

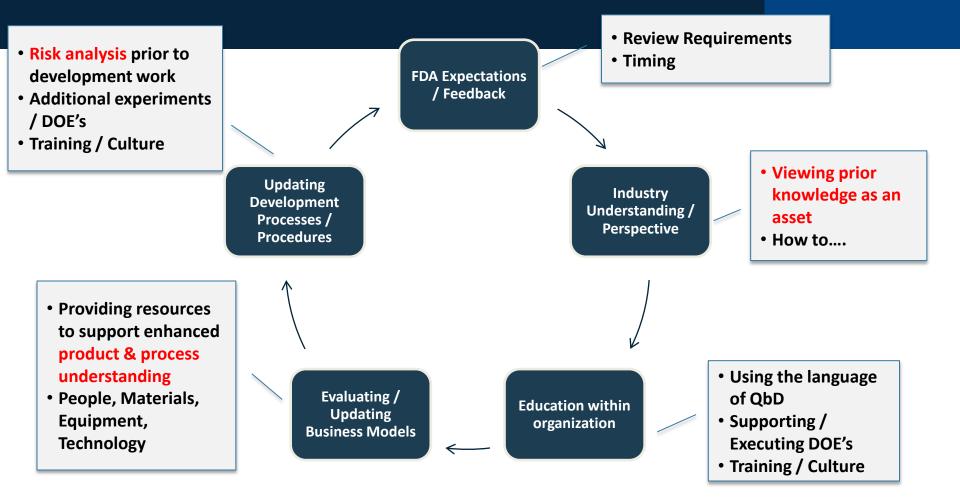
Our Capabilities make Perrigo One of the World's Leading Pharmaceutical Development & Manufacturing Organizations

Capabilities

- ✓ Tablets
- ✓ Capsules
- Solutions
- ✓ Suspensions
- ✓ Sprays (Nasal)
- ✓ Suppositories
- Creams/ointments
- ✓ Powders
- ✓ Lozenge
- ✓ Foam
- ✓ Aerosols
- ✓ Gums
- ✓ Injectables
- ✓ Spot-on pesticides
- ✓ Extruded pellets

Every second of every day, somewhere in the world, nearly 1,600 people will use a Perrigo product

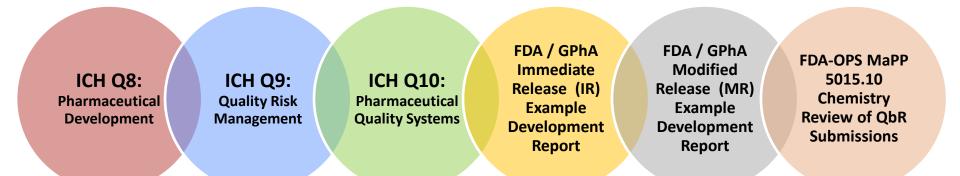
FDA Message – QbD is Essential to Quality


U.S. Food and Drug Administration Protecting and Promoting Public Health

- "80% of prescriptions are being filled with generic products and branded drugs coming off patent every day."
- "There is a more crucial need to develop more efficient, reliable, and versatile manufacturing methods."
- Generative of pharmaceuticals is rapidly increasing..."
- "Quality by design is an essential part of the modern approach to pharmaceutical quality."
- General "In order for quality to increase, it must be **built into the product**."
- Generic Manufacturers Need to be Full Participants in FDA's Pharmaceutical Quality for the 21st Century Initiative
- □ "An *initial investment* is necessary to achieve the cost effective manufacturing of the Future."

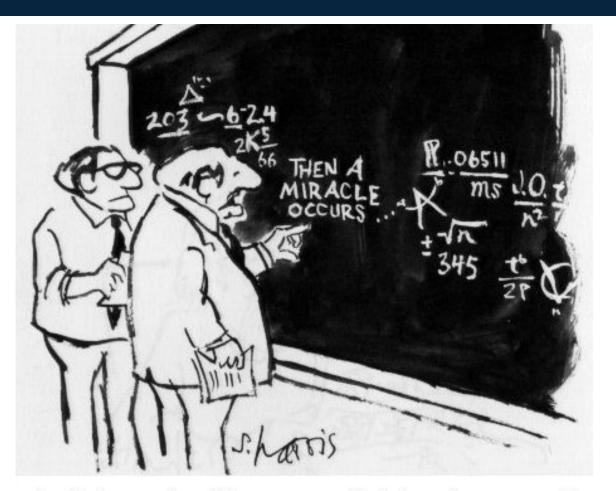
"Implementation of QbD is essential to ensuring the availability of affordable, high quality generic drugs."

General Approach for Implementing QbD


Perrigo

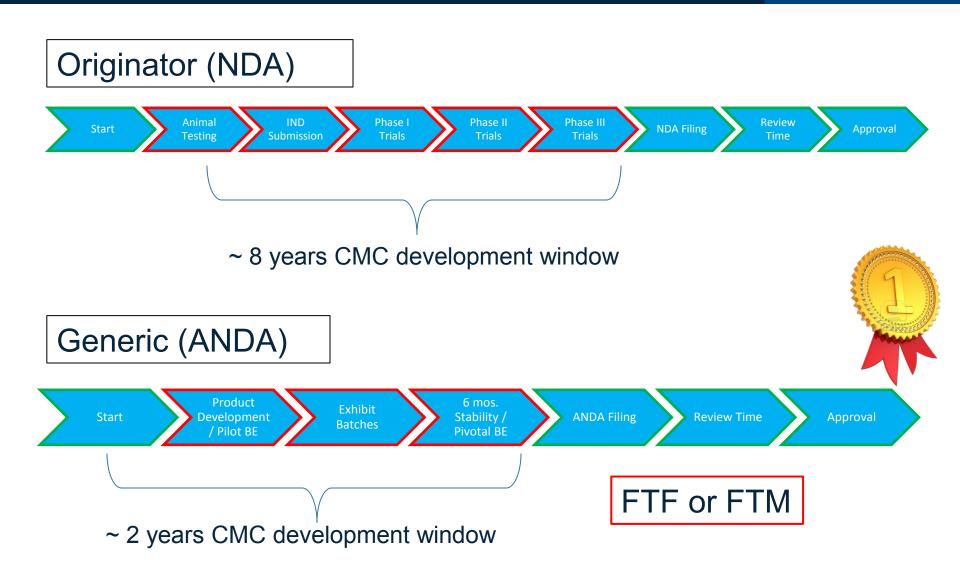
Implementation of QbD has been both Technical and Strategic

Available Tools / Resources



- MaPP 5015.10 (QbR) published November 2014
 - Revised to better capture QbD expectations
 - Reviewer Companion Documents contains additional details for what the applicant should provide for each question
- Others:
 - ICH Q1 (A-E): Stability Guidances
 - ICH Q11: Development and Manufacture of Drug Substances
 - USP <1059> Excipient Performance

Development without QbD?

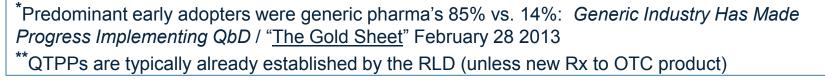


"I think you should be more explicit here in step two."

from What's so Funny about Science? by Sidney Harris (1977)

Pharmaceutical Product Development Timelines to Market

What Differentiates Generic Product Development in QbD?*



CMC product development is *always* on the critical path, thereby forcing a generic firm to be very efficient with QbD development processes (including identification of CPPs and CMAs)

- Documented prior knowledge
 - Internal data mining
 - Research articles, review papers, patents or reference books

continuous during

- Reference Listed Drug (RLD) labeling^{**}
- Risk assessment
 - Evaluation
 - Mitigation
 - Control Strategy with Justification

Impact to ANDAs

FDA Review Focus Characterization **Design of** Commercial of the Reference **Pivotal Bio-**Bioequivalence **Product & Product Product and** batch Study Manufacture **Process Materials Prior Review Focus API DMF Critical Quality New Review Focus Attributes QbD** is a development process **QbD** elements must be integrated into the development process

Perrigo Implementation – What's Been Done

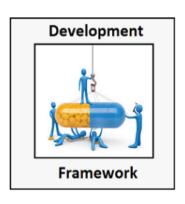
Created a common QbD vision with processes & structured thinking...

Defined / Updated Development Cycles

- Clear targets defined throughout development
- Target defined at project initiation
- Risk Assessments drive development work
- Improved processes for data & documentation compilation
- Enhanced Statistical application

Enhanced Governance

- Drives discipline & consistency
- Increases awareness & transparency of technical risks
- Input by stakeholders & key participants (cross-functional)


Invested in training & processes that are sustainable,

not individual based

Perrigo Customized Drug Development Process

Custom interactive platform for integrating development process flows with templates, tools, guidance documents, and procedures

Supports:

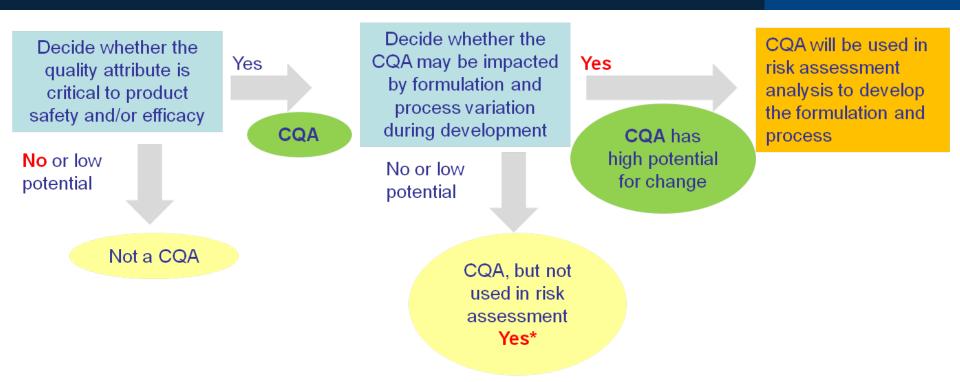
- Enhanced data & documentation compilation
- Alignment across multiple developing sites
- Clear expectations for what is required within each development phase
- Improved access and transparency to development data & information
- Technical Governance with awareness of risks / risk management

Drug Product Development through a QbD Process (Identification of CQAs, CPPs & CMAs)

QTPP identified based on the:

- Clinical and pharmacokinetic characteristics of RLD
- RLD Product label
- In-vitro drug release and physicochemical characteristics

Quality Target Product Profile (QTPP)					
QTPP Element	QTPP Element Target Justification				


Critical Quality Attributes (CQA):

• From the QTPP, Quality Attributes (QAs) of the drug product will be identified

Drug Product Critical Quality Attributes (CQA's) Evaluation						
Quality Attributes	Targat	Is this	luctification of Criticality			
of the Drug Product	Target	Critical?	Justification of Criticality			

Identification of CQAs

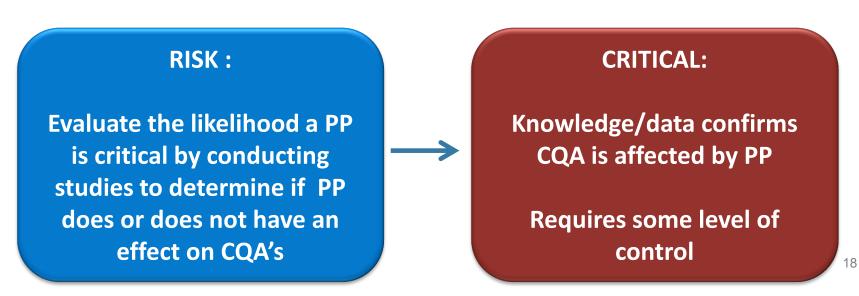
CQA's are the most important measurable product attributes that are used to make design & optimization decisions and to identify CMA's & CPP's later in development

Relationship of CMAs, CPPs & CQAs Perr **CPPs** (Process Inputs) Pharmaceutical **CMAs** CQAs (Intermediate or (Material Inputs) **Unit Operation**

Note: A CQA of an output may become a CMA if it becomes an input material of another unit operation.

Final Product)

Risk Assessments connect CQAs to the CMAs and CPPs and are the basis for identifying Control Strategies


Identification of CPP

Definition:

A process parameter (PP) whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality.

"Risk" vs. "Critical"

Risk Assessment

It is neither always appropriate nor always necessary to use a formal risk management process..... The use of informal risk management processes can also be considered acceptable. -ICH Q9

- Documented prior knowledge & apply sound scientific principles
- Tools FMEA, Fishbone, Databases
 - Standardization / knowledge base for attributes & parameters
- Justification

Dava Dao du ot	Variables & Unit Operations						
Drug Product CQA's	ER beads – drug layering	ER coating	Final blending	Compression			
Appearance	Low	Low	High	Medium			
Assay	High	Low	Medium	Medium			
Degradation Products	Medium	High	Medium	Low			
CU	Medium	Low	High	High			
Drug Release	Medium	High	Medium	High			

Risk Management Process

Risk Assessment of the Drug Substance, Material Attributes, Formulation Variables, and Processing Parameters:

Risk identification through risk assessment process

> Risk mitigation through structured experimental studies (OFAT, DOE's, etc.,)

How Perrigo Brings QbD into Development

Example of Process Mapping for Risk Assessment of Process Parameters

	G23 🗸 🕤		<i>f</i> ∝ Appearance						
	A	В	C	D	E	F	G	Н	
1									
2	Dorrigo		Dick According	Tool			Outputs ("X")Drug Product CQAs		
3	renigo		Risk Assessment	1001		•	Assay		
4						•	Content Uniformity		
5						<u> </u>	Dissolution		
6									
		-					Drug Product		
7							Critical Quali	ty	
8							Attributes		
9	FPS		Process Inputs (the "Y")** Process Parameters	Type* (C/UC)					
10	Final Mix								
11			Speed						
12			Screen Size and Type						
13			Amperage						
14		☑	Setup						
15			Model						
16		☑	Feed Rate and Type						
17			Loading Type Process Para	meters	1				
18			Knive Setup				Outputs ("X") In-Process QAs		
19			Input	S	1		Particle Size Distribution		
20							Bulk Density		
21			(0			Tap Density		
22			(0		☑	Yield & Accounts W		
23			(0		Ӯ	Appear In-Process Qualit	v	
24			(0					
25			(0			Attributes		
26	Milling-Fitzmill		(0					
27			(0					
28			(0					
29			(0					
	M Instructions / I	Roles	and Responsibilities ProcessMapping R	isk Assessment 🏒	Det 🛛 🖌				

CPPs & CMAs

Risk assessment, risk mitigation studies, development/scale-up studies

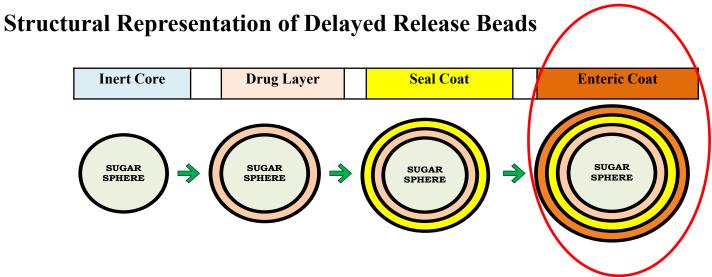
Critical Process Parameters (CPPs)						
Formulation Processing St	tage:	Drug Layering: Solution mixer				
Process Parameter	Is this Critical?	Range	Type of Control			

Critical Material Attributes (CMAs)						
Material:	API					
Material Attribute	Is this Critical?	Range	Type of Control			

Identification of Critical Processing Parameters Identification of Critical Material Attributes

Control Strategy

Selection of Final Formula & Process and finalization of the control strategy


Drug Product CQA	Incoming materials	Process parameter controls	In-process controls (measurements)	Release Testing
Identity	ID testing on drug substance	None	None	Tested at release
Assay	Drug substance purity	Blend Time Press Speed	In-process core tablet assay measured by NIR	None

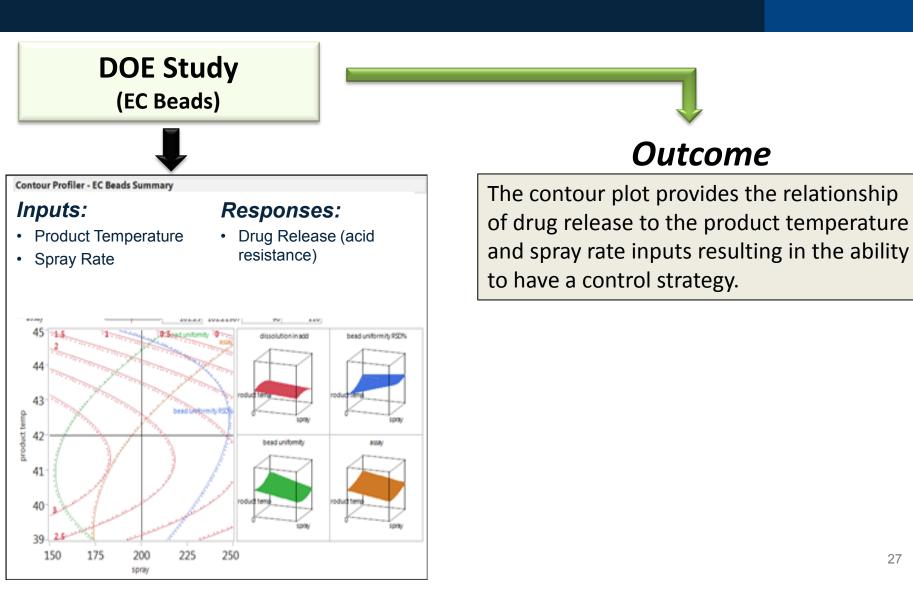
Case Study

Introduction

- Identified CQA's for the DR beads based upon prior knowledge and RLD
 - Assay
 - CU
 Drug Release (Acid) & Buffer Stage)
 Impurities

Risk Assessment & Risk Mitigation for Enteric Coating Stage

Initial Risk Assessment


CQA:	Acid Stage	Dissolution
Input Process Parameters	Risk	Justification and Initial Strategy
Coating Load Size	Low	
Atomization Air Pressure	Low	Based upon scientific literature and/or documented prior knowledge
Spray (Flow) Rate	Medium	bused upon scientific incruture and/or documented prior knowledge
Product Temperature	Medium	

Risk Mitigation Study:

- Fluid Bed Coating Process via GPCG 30 (Glatt fluid bed system)
- Design DOE (full factorial design) to evaluate impact of process parameters (factors and ranges) upon CQAs

DOE for Enteric Coating Stage

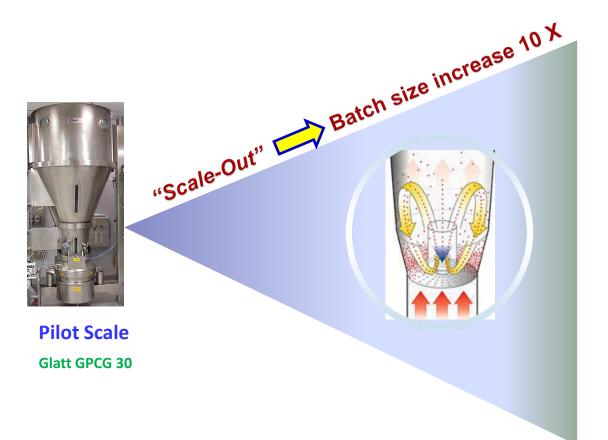
Risk Mitigation for Enteric Coating Stage

CQA:	Acid Stage	Dissolution	
Input Process			
Parameters	Risk	Justification and Initial Strategy	
Coating Load	Low		
Size			Sefore Studies
Atomization Air	Low		Delote Studies
Pressure		Based upon scientific literature and/or documented prior knowledge	
Spray (Flow)	Medium	based upon scientific incrature and/or documented prior knowledge	
Rate			
Product	Medium		
Temperature			

CQA:	Acid Stage Dissolution				
Input Process					
Parameters	Risk	Justification and Strategy			
Spray (Flow)	Low				
Rate		Based upon DOE outcome resulting in effective control strategy			
Product	Low				
Temperature					

Risks mitigated through process understanding and control strategy

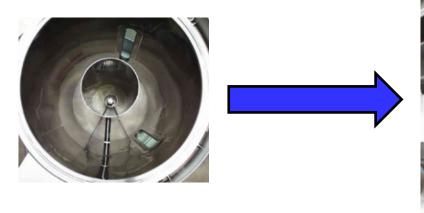
CPPs for Enteric Coating Stage



Identification of Critical Process Parameters

Formulation Processi	ing Stage	Enteric Coating-Wurster Coating		
Process Parameter Is this Critical?		Range	Type of Control	
Atomization Air Pressure	No	See Batch Record	Operating Range	
Spray (Flow) Rate	Yes	See Batch Record	In-Process Control	
Coating Load Size	No	See Batch Record	Fixed	
Product Temperature	Yes	See Batch Record	In-Process Control	

Technology Transfer to Commercial Scale Enteric Coating Process

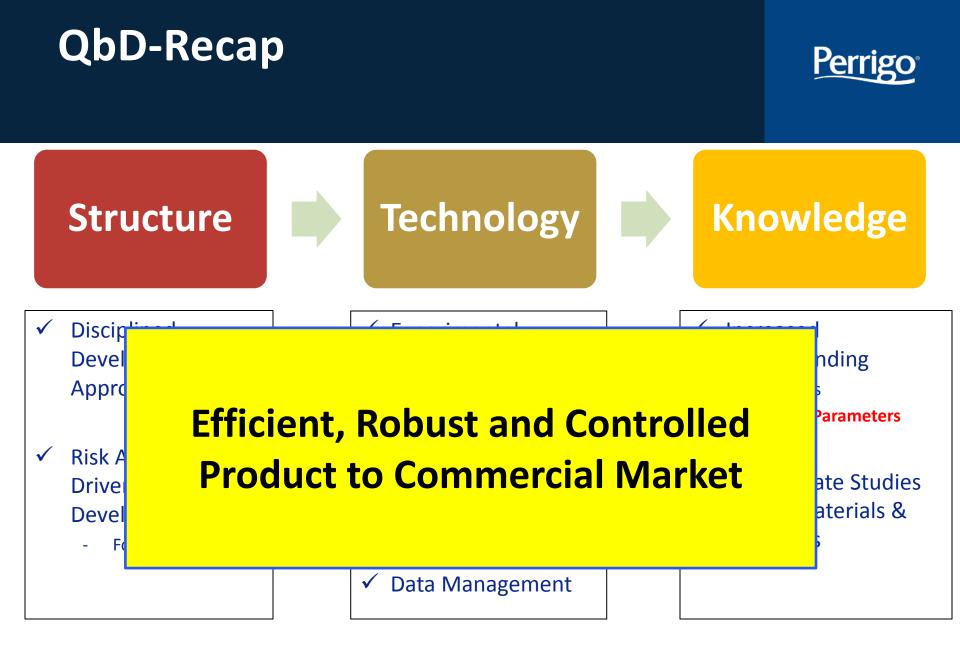


Commercial Scale Glatt GPCG 500

Scale-up of Enteric Coating Process

Perrigo

- 1. Apply scale-up factors based upon
 - Literature
 - Equipment Manufacturers Recommendations
 - Prior Knowledge


- 2. Verify CPP control strategy via augmented DOE at commercial scale
 - Design space verified at target and min/max of ranges identified at pilot scale

Case Study Conclusion

- Systematic process parameter risk assessment followed
- Structured experimental study completed to ensure process understanding
- Risk mitigation of CPPs achieved via control strategy
- Successful process scale-up by utilizing scale-up factors
- Verified CPPs from pilot scale studies

Robust Process is Established at Commercial Scale

Acknowledgements

Raj Thota, Director, CHC Formulation Research & Development

Stefanie Rentfrow, Associate Director, CHC Analytical R&D