

Product Quality Research Institute

Chemistry Considerations for a Pre-Filled Syringe Case Study

Michael Ruberto, Ph.D.

President

Material Needs Consulting, LLC

Outline

Goal – To provide a chemistry assessment for a pre-filled syringe case study

- Material evaluation
- Design of a controlled extractables study based on the PODP recommendations
- Generation of E&L mock data
- Data evaluation

Pre-Filled Syringe Components Case Study

PFS Components – Materials (1) What do we know?

- Polymers
 - Residual Solvents, Monomers, and Oligomers
 - Primary Antioxidants (Hindered Phenols)
 - Secondary Antioxidants (Organic Phosphites)
 - Lubricants
 - Processing Aids
 - Fillers
 - Curing Agents
 - Plasticizers

PFS Components – Materials (2)

- Acid Scavengers
- Colorants
- Antimicrobials
- Other Specialty Additives
 - Expected and Unexpected
- Additive Transformation and Degradation Products

• All of these chemicals have the potential to migrate from the CCS components and into the drug product

Principles Governing Extraction

Migration - the transport of chemicals from polymer to the surrounding environment.

Two Physical Principles determine Total Migration:

- Thermodynamics the *extent* to which material will migrate.
 - Partitioning of chemicals from plastics: solubility
 - Describes potential to migrate
- Kinetics the *rate* at which chemicals will migrate.
 - Most important!
 - Diffusion coefficients are <u>usually</u> small, so diffusion time is long.
 - Chemical with favorable thermodynamic migration potential may migrate slowly due to slow kinetics.

Diffusion

Migration of materials is proportional to the

square root of time.

$$X = \sqrt{\frac{2kTt}{6\pi\eta r}}$$

- X Mean Square Displacement
- t Time
- k Boltzmann constant
- T Temperature
- η viscosity
- r radius

What factors influence extractions?

- Time
- Solvent
- Temperature
- Physical properties of the polymer

Selecting Solvents for Extraction Testing

Consider...

- Drug Product Formulation and Active ingredients
 - Extractive power of formulation
 - Acidity or Alkalinity of formulation
- Processing and Storage Time and Temperature
 - How long will the formulation be exposed to the CCS component
 - End use temperatures
- Other Issues
 - Freeze / Thaw Cycles
 - Sterilization
 - Can affect the morphology of the polymer and subsequently the diffusion rate
- Solvents that significantly swell a polymer are "aggressive"

Case Study – Drug Product (1)

- Drug Product Complex Formulation
 - Active Ingredient: Large Organic Molecule
 - Coarse Dispersion
 - Tonicity, Suspension, Viscosity, and Wetting Agents
 - 2 Antimicrobial Preservatives
 - Buffers
 - All Excipients, Except the Tonicity Agent and Buffers, are Organic

Case Study – Drug Product (2)

What do we know?

- Very Aggressive Solvating Properties for a Parenteral
- Possible surfactants
 - Could swell the polymer
 - Increase the overall concentration of possible leachables
- High salt content
 - Reduce Migration of Organics "Salting In"
 - Increase Migration of Inorganics
 - Residual Catalysts, Fillers, Acid Scavengers, etc.
- Irradiation Prior to Filling
 - Could result in increased migration due to a change in polymer morphology

10

Possible presence of a violet / blue pigment to mask

discoloration of the polymer

Controlled Extractables Study

- Aqueous pH 2.5
- Aqueous pH 9.5
- Mixed IPA / Water
- Organic IPA
- Organic Hexane
- Technique
 - Aqueous: Sonication and Sealed Vessel
 - Mixed: Reflux
 - Organic: Soxhlet and Reflux

Selecting Analytical Methods

Analyzing the Extracts

- Volatile Organic Compounds
 - Head Space, SPME, Thermal Desorption GC/MS
- Semi-Volatile Organic Compounds
 GC/MS, GC/FID
- Non-Volatile
 - HPLC/UV, HPLC/MS
- Trace Metals
 - ICP/MS
- Focus on Semi-Volatile and Non-Volatile for
 this Case Study

Consider the Safety Assessment Triad

Material Characterization (Controlled Extraction Study); Screening and Selection Extractables as tentative leachables **Simulation Study** (Simulated Extraction Study) Worst-Case Safety Assessment Extractables as **probable** leachables Given the very aggressive **Migration Study** solvating power of the DP, (Target Leachables Study) the simulation study could be Actual Case Safety Assessment omitted and the migrants from **Confirmed leachables** the controlled extraction study considered to be probable leachables

Hexane Extractables "Mock" Data

Organic Extractables	Component
Tris(2,4-ditert-butylphenyl) phosphite	PP - Barrel
Pentaerythritol tetrakis(3-(3,5-di-tert-	PP - Barrel
butyl-4-hydroxyphenyl)propionate)	
Erucamide	PP - Barrel
3-(3',5'-di-t-Butyl-1'-hydroxy-4'-	PP - Barrel
oxacyclohexa-2',5'-dienyl) propanoic acid	
Unknown A	PP - Barrel
Unknown B	PP - Barrel
Benzo(a)pyrene	Rubber - Stopper
Docosane	Rubber - Stopper
Hexadecanoic acid	Rubber - Stopper
2,6-Di-tert-butyl-methylphenol	Rubber - Stopper
Octadecane	Rubber - Stopper
2-Bromo-4-(1,1-dimethyl-propyl)-phenol	Rubber - Stopper
Octamethylcyclotetrasiloxane	Rubber Stopper
Hexamethylcyclotrisiloxane	Rubber - Stopper
Unknown C	Rubber - Stopper
Unknown D	Rubber - Stopper
Unknown E	Rubber - Stopper

Dealing with the Unknowns

- Determine the approximate concentration using a suitable internal standard and compare to the AET
- Compare the solvent used for the extraction to the drug product. If the migrant is a "Tentative Leachable" of low concentration, then it could be targeted in the Simulation Study
- If the unknown was detected in the Simulation Study and it is above the AET, it can be considered as a probable leachable and more structural information is required.
- Provide all the chemical data to a toxicologist for a formal safety assessment.

IPAC-RS Proposed Identification Categories

Identification Categories for Structure Elucidation of Extractables and	
Leachables by GC/MS and LC/MS	

Category	Identification Data
Α	Mass spectrometric fragmentation behavior
В	Confirmation of molecular weight
С	Confirmation of elemental composition
D	Mass spectrum matches automated library or literature spectrum
E	Mass spectrum and chromatographic retention index match authentic specimen

Leachables Testing – Correlation (1)

In theory, the leachables profile should be a subset of the extractables profile

Leachables Testing – Correlation (2)

In reality, new components can be present if the leachable reacts with the drug product.

Leachables Testing – Correlation (3)

- Establish correlation between Leachables and Extractables
 - Qualitative
 - Quantitative
- Direct or Indirect Correlation
 - Component identified in extraction study
 - Component linked to extraction study
 - Component a reaction with drug product

Leachables Testing – Correlation (4)

- Look for trends
- Diffusion is a time based phenomenon
- Leachables should increase over time
 Unless an equilibrium is reached
 - React or degrade over time
- New leachables could potentially appear late in the study
- Simulation Studies can often avoid surprises

"Mock" Leachables Data

Concentration (µg/device)
0.09
1.3
1.5
0.05
0.03
0.06
0.09
0.08
1.1
0.05
0.07

Calculation of AET

Assumes SCT of 0.15 μ g/day and 1 dose per day

AET = 0.15 µg/day 1 doses/day x 1 doses/device = 0.15 µg/device

Not Detected in CES

Phosphites – Transformation Chemistry

Phosphites – Degradation Chemistry

Chemistry Summary

- A material evaluation was performed on the pre-filled syringe components and possible target extractables were identified.
- A controlled extractables study was designed taking into account the materials used to construct the barrel and stopper as well as the solvating power of the drug product.
- Analysis of the E&L data revealed that two leachables were not detected in the extractables profile, but their origin was determined.
- Three leachables were present at concentrations greater than the AET.
- All E&L data was submitted for a toxicological assessment.

