PQRI Technical Analytical Challenges Round 2 Interlaboratory Study: Progress and Early Findings

November 3, 2017

Donna Seibert Perrigo

James Harrington RTI International

Disclaimer

- Any images of or references to specific commercial products, processes, or services does not constitute an endorsement or recommendation by PQRI, the TAC team, or Interlaboratory study organizers.
- The views and opinions of authors expressed herein do not necessarily state or reflect those of PQRI, and shall not be used for advertising or product endorsement purposes.

Background

- Risk assessment requires some basis in data
- Key question for industry and the regulatory community

- How reliably can we measure elemental impurities in drug products, APIs and excipients at the levels outlined in ICH Q3D and USP <232>/<233>?
- Variety and complexity of pharmaceutical samples
- Many labs expanding capabilities
 - Pharmaceutical labs adapting to ICP-MS analysis
 - Existing spectroscopy labs adapting to the requirements of <233>

Key Considerations

- Sample Preparation
 - Ensure appropriate and effective solution preparation
 - Total metal extraction implies clear solutions
- Instrumental Analysis
 - System suitability/data integrity
 - Options for sample introduction and interference reduction
 - Sample introduction accessories, reaction gasses & collision cells, correction equations, etc.
 - Calibration & LOQs
 - LOQ should be considered for large dose products and for raw material analysis

- Data review & interpretation
 - Recognition of issues
 - Drift, carryover/memory, interferences or element-specific pitfalls, nonideal recoveries
 - Reportable data
 - Multiple modes of analysis possible
- No pharmaceutically relevant reference materials available

Inter-laboratory Study Objectives

Objectives

- Address some key technical challenges faced by industry in preparation for compliance to ICH Q3D and USP <232>/<233>
- Provide a data-driven way to discuss technical aspects and expected variation of ICP-MS analysis of elemental impurities

- More specific objectives:
 - Inter-laboratory data comparison for standardized samples
 - Inter-laboratory evaluation of effectiveness of microwave digestion
 - Comparison of acid leach/extraction techniques to total metal extraction
 - Examination of the correlation (good or bad) between the analysis of individual components (summation) vs. the formulated tablet analysis
 - Comparison of ICP-MS and alternative techniques (ICP-OES and XRF)

First Round Study Outcomes

- Data for standardized samples allowed assessment of variation across laboratories
- Labs benefit from access to standardized evaluation samples
- Comparison of summation approach and finished product testing
 - Confounded by low levels of native elements and high influence of outliers
- Tighter variation among non-uniform methods
 - Suggests need for flexibility in methodology for testing labs
- XRF demonstrated as a complementary technique to ICP-MS
- Second round initiated
 - PQRI Sponsorship—allows wider participation
 - Study Administrator—RTI International

Second Round Enrollment Comparisons

General

- Digestion optimization performed with actual tablet samples
- Consistency in digestion conditions

ICP/MS	Uniform	Non-Uniform	Non-Uniform HF Methods
First Round	11 labs	15 methods	6 methods
Second Round	27 labs "exhaustive extraction"	?	16 labs "total digestion"

Consistency among alternative techniques to ensure adequate data for comparison

	ICP-OES	XRF	
First Round	1	4	
Second Round	16	7	

- Raw materials to be distributed more widely for summation approach comparison
 - $2 \text{ labs} \implies 23 \text{ labs}$

Second Round Design Improvements & Best Practices

Uniform Sample Preparation

- Specify parameters such as sample size, sampling technique, replicates, acid mixtures, and digestion temperature/pressure
- Document type of digestion vessels and microwave model used
 - IPV vs. SRC

Second Round Design Improvements & Best Practices

Uniform Analysis

- Define isotopes used for quantitation
- Define procedures around units, LOQs, calibration, system suitability and data reporting
- Document interference management (reaction/collision gases, correction equations, etc.), internal standards, and any additional isotopes monitored
- Document instrument type
 - Single Quad vs. Triple Quad vs. High resolution systems

Second Round Evaluation Samples

Liquid Sample

• Added to assess instrumental variation independent of sample preparation

Solid Samples

- Tableting is preferred to preserve homogeneity
- Material combination must have favorable mixing & flow properties, and must be compressible

- Multiple tableted evaluation samples targeting three different levels
- EI source from pharma materials wherever possible
- EI source from materials that are not easily solubilized

Formulation Design

- Pharmaceutical materials that contain significant, known levels have been elusive
 - Kauffman paper, Lhasa database participants, TAC team member experience

- Considered non-pharma grades of pharma materials (talc, rice starch, etc.)
- Small group of materials containing Pb & Cd identified
- Few materials contain significant As & Hg
- Class 2A elements present in iron oxides—
 - Low level usage in real pharma usage
 - Introduce Fe, a potential source of interferences
- Physical/chemical properties eliminated some materials (CaCO₃, Na alginate, etc.)
- Key decision for solid formulations
 - Tablets similar to the first round tablets
 - Include small amounts of matrix XRF standards (silicon dioxide)
 - Some variation in materials used across three levels

Formulation Finalization and Tablet Manufacture

- All formulation materials gathered at LJMU from various donors
- Small test batches produced, digested and analyzed
- Results initially lower than expected for multiple elements
- Digestion tweaking resulted in good recoveries for most elements, but no detectable V.

	0.25 g 15 min hold at 210 °C		0.25 g 5 min hold at 210 °C		0.5 g 5 min hold at 210 °C	
Level 2 Tablets	%Recovery	RSD	%Recovery	RSD	%Recovery	RSD
⁷⁵ As	82.7	3.0	89.1	4.2	38.3	8.7
¹¹¹ Cd	102.3	3.0	71.1	2.3	54.4	3.0
²⁰² Hg	100.9	5.9	101.3	12.7	102.5	7.0
²⁰⁸ Pb	89.2	2.3	88.3	5.5	76.8	5.8
⁵⁹ Co	83.8	5.7	91.8	3.0	97.6	11.6
⁶⁰ Ni	98.4	9.1	93.2	2.6	105.4	10.3
⁵¹ V	N/A	N/A	N/A	N/A	N/A	N/A

• Tested iron oxide—no detectible V!

Formulation Finalization and Tablet Manufacture

- Replacement lot of red iron oxide obtained with known V content
- Manufactured additional small test batch with new source of iron oxide
- Additional digestions confirmed presence of V
- Produced actual evaluation samples at three levels

Key Decisions on Digestion Methods

Goal: Pre-define digestion approaches and clearly the define procedures.

- Highly aggressive microwave digestion
- Less aggressive microwave digestion
- Non-microwave acid leach methods (hot blocks/shakers/rotators/etc.)
- Non-uniform methods

 (choice of individual labs,
 variations in acid combinations,
 microwave programs, etc.)

- Not formally included in study
- Adequate tablets will be distributed to allow individual labs to generate data
- Allows intra-lab comparisons, and comparison to overall study results
- If critical mass is achieved, data mining is a possibility

Digestion Optimization

- Total digestion:
 - Highly aggressive microwave digestion (using HF or HBF₄)
 - Complete digestion that is stable (no re-precipitation)
 - Achieves clear solution with no insoluble material
- Exhaustive extraction:
 - Less aggressive microwave digestion (e.g., EPA 3051A)
 - Acid extraction that is equivalent to the total digestion results
 - Achieves totally recovery of EIs from tablet matrix, but does not necessarily achieve a clear solution
- Test the variability of the analytical method across the labs
 - Minimize the differences in sample preparation between labs
- Limitations:
 - HCl Not all microwave systems are compatible
 - HF/HBF₄ Not all labs equipped for use

Total Digestion Procedure

Total digestion:

- Highly aggressive microwave digestion (using HF or HBF₄)
- Complete digestion that is stable (no re-precipitation)
- Achieves clear solution with no insoluble material
- Sample size: 1 tablet (0.25 g)
- Acid matrix: 0.5 ml H₂O, 2.5 ml HNO₃, 0.5 ml HCl, 0.5 ml H₃PO₄, 1 ml HBF₄
- Microwave program (SRC, UltraWAVE with ECR, HCl compatible):
 - 1. Ramp to 250 °C for 25 min
 - 2. Hold at 250 °C for 20 min
- Dilute to 50 ml \rightarrow Intermediate solution
- Additional 50X dilution w/ additional HCl and HNO₃
- Analysis by ICP-QQQ-MS/MS using multiple detection scheme for maximum selectivity

Total Digestion – Accuracy Assessment

Replicates (n=3) spikes using 30% tablet and neat-standards Typical RSDs are <15%, and most are <5%

Exhaustive Extraction

Exhaustive extraction:

- Less aggressive microwave digestion (based on EPA 3051A)
- Acid extraction that is equivalent to the total digestion results
- Achieves totally recovery of EIs from tablet matrix, but does not necessarily achieve a clear solution
- Sample size: 1 tablet
- Acid matrix: 10 ml HNO₃, 5 uL 10,000 ppm Au
- Microwave program (IPV, Ethos):
 - 1. Ramp to 175 °C for 3 min
 - 2. Hold at 175 °C for 7 min
- Dilute to 50 ml \rightarrow Intermediate solution
- Centrifuge to remove remaining particulate
- Additional 50X dilution w/ additional HCl and HNO₃
- Analysis by ICP-QQQ-MS/MS using multiple detection scheme for maximum selectivity

Comparison of Digestion Approaches

Replicates (n=9, triplicate at each tablet level)

Mass Balance: Comparison to Measured Value

Replicates (n=3) for all tablet levels (30%, 100%, 300%) and RMs

The XRF story

First Round Findings

- Results generally comparable to ICP-MS
- Bias from background levels in materials used to make standards
 - Apparent in Pb and V results
 - Standard additions in calibration setup could correct for this bias
- When sample is not limited, XRF offers quick and economical analysis
 - Once calibration is established, only check standards need to be analyzed
- Key Decisions for Second Round XRF Study Design
 - Calibration: Empirical or Standard Additions?
 - Because of multiple tablet levels, fundamental parameters option was explored

Empirical vs Fundamental Parameters (FP)

Empirical

- Each analyte calibrated independently
- Each level of tablet requires its own set of standards

Fundamental Parameters—

- Calibration of all analytes and the inorganic components of the matrix (Al, Fe, Si, etc.) through <u>inter</u>dependent calibration to describe 100% of the formulation
- Once prepared, FP calibration can be used across tablet levels
- Set of 8 calibration levels has been proposed

Remaining Steps

- Reporting template—in review
 - ICP-MS and XRF reporting templates
- Package assembly & shipment—in progress
 - RTI distributes packages to US
 - Phil Riby distributes packages to UK/EU
 - Separate shipments will be needed for ICP/MS and XRF

- Requested data delivery timeline
 - End of March

Acknowledgements

- PQRI
- Frank Weber, RTI International
- Phil Riby, University of Manchester
- Matt Roberts, Samar Thiab, Liverpool John Moores University
- Denise McClenathan, Kelly Smith, Andrei Shauchuk, P&G
- Dave Schoneker, Colorcon
- Glenn Williams, Thanh Nguyen, Rigaku
- Josh Foote, Perrigo
- TAC Team members
- All participating labs

The University of Manchester

