Extractable Element Testing in USP Packaging Chapters: Current Perspective

Diane Paskiet Co-Chair , <381> Expert Panel Packaging and Distribution Expert Committee Member

Extractable elements testing

- The testing of extractable metals in USP Packaging standards dates back to the 1980's
 - <231> Heavy Metal in the plastic and elastomers standards
 - <211> Arsenic in the glass standard.
- A relevant quality attribute of a material or component is its propensity to leach metals and other substances that are measured as extractable elements.
 - There are numerous instances when metallic or elemental leachables had a discernible and sometimes undesirable effect on product safety and/or quality
- As the PDEC revises the various packaging standards a major discussion point has been around extractable element testing and what form it should take in the future.

Extractable elements testing

- The major considerations for testing materials or components discussed
 - Sample preparation
 - How to test the sample
 - What elements to measure
 - What specification, if any

- Packaging materials and components used in final packaging systems do not dissolve under the conditions of use.
- Inorganic and organics substances from packaging systems accumulate in the drug product by the process of leaching (extraction).
- Thus, the appropriate and relevant sample-preparation process for assessing extractable elements is extraction, as opposed to complete digestion

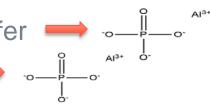
For testing the extract, atomic absorption spectroscopy and emission spectroscopy (ICP-AES or ICP-OES) were chosen due to their performance capabilities and their wide application and availability.

- The concept of relevant elements
 - a relevant element is one which is a known constituent of the material or component that could potentially arise from a <u>starting material</u>, <u>additive</u>, or <u>manufacturing process</u> and elements of known toxicological concern as outlined in <232>.
 - Nontoxic elements that are intentionally added because of potential drug product sensitivities and interactions

Nontoxic elements

Cause of visible particulates:

- Leached aluminum + sodium phosphate buffer
- Cause of drug product degradation :
 - Leached aluminum catalyzed bisulfite reaction Leached aluminum catalyzed bisulfite reaction CHCH₂NH₂CH₃ + ⁰ T CHCH2NH2CH3


A1⁺³ +

Cause of protein aggregation:

Tungsten oxide leached from process to insert needle into glass barrel

 $WO_3 \rightarrow Na_2WO_4 \bullet 2H_2O$

Pb, Hg, As, Cd

Others elements associated with materials used in packaging are under discussion

Current position

- Moving forward there will not be a pass/fail specification for specific elements, but just a reporting threshold
 - This allows generated data to be more effectively used in the final assessment
- Approach was used in the revision of <381> in 2017, but not in the revision of <661.1> in 2015
 - The decision to include certain element with specification in <661.1> was to align with other long standing polymer standards (European Pharmacopeia)
 - PD EC will propose a revision 2018 to remove all specification tied to extractable elements in <661.1>

Extractable elements testing: Summary

- The major considerations for testing materials or components discussed
 - Sample preparation
 - extraction
 - How to test the sample
 - atomic absorption spectroscopy and emission spectroscopy (ICP-AES or ICP-OES)
 - What elements to measure
 - relevant elements
 - What specification, if any
 - reporting threshold

Proposed USP <381> Extractable Elements

Considerations for replacement method

- USO
- Target potential elemental impurities required as per ICH Q3D
- Provide selective and specific elemental data
- Provide quantitative data
- Appropriate sensitivity
- To enable decision about SUITABILITY FOR USE

Elemental Impurities Guidance for Industry Route of Administration: Parenteral

Class	Elements	Included in Risk Assessment
Class 1	As, Cd, Hg, Pb	Yes
Class 2A	Co, Ni, V	Yes
Class 3	Cu, Li, Sb	Yes
Other	Zn	Not Required

Extractable elements – Method considerations

Extraction solvents

- Water, pH adjusted
- Acid solutions
- Concentration
- **Extraction ratios**
 - Surface area
 - Weight
- Solvent volume
- Extraction technique and conditions
- Reflux
- Sealed vessel

Evaluation of extraction efficiencies

- Spike aqueous solutions spanning pH range
- Identified most efficient recovery solvent
- Spiked using acidic extraction conditions
- Testing by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Stimuli Article: The Rationale and Proposed Changes to the Revision of *Elastomeric Closures for Injections (381), PF 43 (5)*

Final proposed extraction conditions

Extraction Solution

- 0.2 N Nitric Acid
- 0.05 N Hydrochloric Acid
- 200 ppb Gold
- Sample Size
 - Component to Solvent Ratio 1:2.5
 - Weight to volume Ratio
- Extraction Conditions
 - Sealed Container
 - 70°C for 24h

Proposed analysis and reporting

- / ICP-MS or ICP-OFS
- Solutions analyzed by ICP-MS or ICP-OES
 - Appropriate interference corrections are critical
- Evaluate blank solutions
 - Check for reagent contamination
- Evaluate spike recoveries
 - Verify recovery at Sensitivity Threshold (0.05 μg/g)
- Data evaluation
 - Analysis: Sensitivity Threshold of 0.05 µg/g of component
 - Reporting: result to be converted to µg/component

Analytical considerations

Extraction

- Suitable container (must be free of detectable elements)
- Instrumentation
 - Must be capable of achieving Sensitivity Threshold of 0.05 $\mu g/g$ of component (0.02 $\mu g/mL$ in extract)

Interferences

- Transition metals prone to interferences
- Arsenic will suffer interference due to matrix
- Sample may give rise to interferences

- Analytical results obtained in µg/g of component
 - Sensitivity Threshold of 0.05 µg/g of component must be achieved
- Results need to be converted to µg/component for reporting
- Report Results "as found"
 - No limit applied

Example extractable elements data

Component	Size (mm)	Average Weight (g)	Zn (µg/component)
Stopper	13	0.5	< LOQ
Stopper	13	0.5	3.5
Stopper	20	1.8	0.16
Stopper	20	1.7	0.11
Stopper	20	0.6	16
Lyo Stopper	13	0.7	< LOQ
Plunger	n/a	0.2	< LOQ
Needle Shield	n/a	0.2	4.1
Тір Сар	n/a	0.6	0.25

< LOQ = As, Cd, Co, Cu, Hg, Li, Ni, Pb, Sb, V LOQ = 0.05 µg/g of material extracted Source: FDA Laboratory

Component	Weight (g)	Element (µg/g)	Element (µg/component)
Plunger	0.2	0.05	0.01
Stopper	0.6	0.05	0.03
Stopper	1.8	0.05	0.09
Plunger	3.3	0.05	0.17

Sensitivity Threshold = $0.05 \ \mu g/g$

Data Interpretation

Quantitative Result per Element

Extractable Element per Component

Risk Assessment

Conclusion

- USP <381> "Heavy Metals" will be replaced with "Extractable Elements"
- Extractables Elements provides:
 - Element specific data
 - Quantitative data
 - Sensitivity Threshold of 0.05 µg/g of component
 - Data to be converted to µg/component for Risk Assessment
- USP <381> "Extractable Elements" data is suitable to be used in ICH Q3D Risk Assessments

Questions

Empowering a healthy tomorrow

Thank You

Empowering a healthy tomorrow