

ICHQ3D Implementation: An Innovator's experience

Dr. H. Rockstroh, F. Hoffmann-La Roche Ltd, Basel, Switzerland

Disclaimer

The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the official policy or position of Roche, ICH, PQRI, USP or any of their officers, directors, employees, volunteers, members, chapters, councils, communities or affiliates.

Content

Background: ICHQ3D Risk Based Aproach

- Strategy: Reduce the scope, reduce need for testing

Component Approach

ICH Q3D: Paradigm Change

Proactive iterative Risk Based Approach

Identify Evaluate Summarize/Control

Strictly speaking Q3D limits apply to Drug Products:

- The limits do **NOT** apply to Substances for Pharmaceutical Use
- <u>Component approach</u> (2b) allows "mix" of low/high EI content material

Risk Based Approach: Where to start

The challenge is to find a means to identify and categorize risk.

- Otherwise you will test everything (all potential sources / all 24 EIs) or simply default to Option 3
- Option 3 (End Product testing) \Rightarrow Discouraged!
- Test everything then decide where your risks are \Rightarrow Discouraged!

THINK first, THEN TEST

Component Approach (Option 2b): Use logic to simplify / exclude

How do you do this? What role will data play in this?

- Test data or
- Literature (testing has already been done for you)
- Data sharing (testing has already been done for you)

Q3D Risk Based Approach and Control Strategy Component Approach

Group / Exclude where appropriate: Use Logic!

EI in Scope

Reduce Scope: DP is Solid / Liquid / Inhalational?

Are the EIs intentionally added?

*) ≤ 0.2% in 316L Steel §) ≈11% Ni in 316L

Class Oral Paren- teral Inhala- tional Oral Paren- teral Inhala- tional As 1 15 15 2 1.5 1.5 0.2 Cd 1 5 2 2 0.5 0.2 0.2 Hg 1 30 3 1 3 0.3 0.1 Pb 1 5 5 0.5 0.5 0.5 0.5 Co 2A 50 5 3 5 0.5 0.3 Ni 2A 200 20 5 20 2 0.5 V 2A 100 10 1 0.1 0.1 Ag 2B 100 10 1 0.1 0.1 Au 2B 100 10 1 0.1 0.1 Ag 2B 100 10 1 0.1 0.1 Pd 2B 100 10 1 <t< th=""><th colspan="2">Flomonts /</th><th>PDE ir</th><th>n [ug/d]</th><th></th><th colspan="5">Conc. in [ug/g]</th></t<>	Flomonts /		PDE ir	n [ug/d]		Conc. in [ug/g]				
As 1 15 15 2 1.5 1.5 0.2 Cd 1 5 2 2 0.5 0.2 0.2 Hg 1 30 3 1 3 0.3 0.1 Pb 1 5 5 5 0.5 0.5 0.5 Co 2A 50 5 3 5 0.5 0.3 Ni 2A 200 20 5 20 2 0.5 V 2A 100 10 1 10 1 0.1 Ag 2B 150 10 7 15 1 0.7 Au 2B 100 10 1 10 1 0.1 Au 2B 100 10 1 10 1 0.1 Os 2B 100 10 1 10 1 0.1 Pt 2B 100 <t< th=""><th>Class</th><th>.57</th><th>Oral</th><th>Paren- teral</th><th>Inhala- tional</th><th>Oral</th><th>Paren- teral</th><th>Inhala- tional</th></t<>	Class	.57	Oral	Paren- teral	Inhala- tional	Oral	Paren- teral	Inhala- tional		
Cd 1 5 2 2 0.5 0.2 0.2 Hg 1 30 3 1 3 0.3 0.1 Pb 1 5 5 5 0.5 0.5 0.5 Co 2A 50 5 3 5 0.5 0.3 Ni 2A 200 20 5 20 2 0.5 V 2A 100 10 1 10 1 0.1 Ag 2B 150 10 7 15 1 0.7 Au 2B 100 100 1 10 1 0.1 Au 2B 100 10 1 10 1 0.1 Os 2B 100 10 1 10 1 0.1 Pd 2B 100 10 1 10 1 0.1 Ru 2B 100 <t< td=""><td>As</td><td>1</td><td>15</td><td>15</td><td>2</td><td>1.5</td><td>1.5</td><td>0.2</td></t<>	As	1	15	15	2	1.5	1.5	0.2		
Hg 1 30 3 1 3 0.3 0.1 Pb 1 5 5 5 0.5 0.5 0.5 Co 2A 50 5 3 5 0.5 0.3 Ni 2A 200 20 5 20 2 0.5 V 2A 100 10 1 10 1 0.1 Ag 2B 150 10 7 15 1 0.7 Au 2B 100 100 1 10 10 0.1 Au 2B 100 10 1 0.1 0.1 Se 2B 100 10 1 0.1 0.1 Pd 2B 100 10 1 0.1 0.1 Pd 2B 100 10 1 0.1 0.1 Ru 2B 100 10 1 0.1 0.1 Ru 2B 100 10 1 0.1 0.1	Cd	1	5	2	2	0.5	0.2	0.2		
Pb 1 5 5 5 0.5 0.5 0.5 Co 2A 50 5 3 5 0.5 0.3 Ni 2A 200 20 5 20 2 0.5 V 2A 100 10 1 10 1 0.1 Ag 2B 150 10 7 15 1 0.7 Au 2B 100 100 1 10 10 0.1 Au 2B 100 10 1 10 10 0.1 Au 2B 100 10 1 10 1 0.1 Os 2B 100 10 1 10 1 0.1 Pd 2B 100 10 1 10 1 0.1 Ru 2B 100 10 1 10 1 0.1 Se 2B 80	Hg	1	30	3	1	3	0.3	0.1		
Co 2A 50 5 3 5 0.5 0.3 Ni 2A 200 20 5 20 2 0.5 V 2A 100 10 1 10 1 0.1 Ag 2B 150 10 7 15 1 0.7 Au 2B 100 100 1 10 10 0.1 Au 2B 100 10 1 10 0.1 0.1 Au 2B 100 10 1 10 0.1 0.1 Ir 2B 100 10 1 10 1 0.1 Os 2B 100 10 1 10 1 0.1 Rh 2B 100 10 1 10 1 0.1 Ru 2B 100 10 1 0.1 0.1 0.1 Se 2B 150 <td>Pb</td> <td>1</td> <td>5</td> <td>5</td> <td>5</td> <td>0.5</td> <td>0.5</td> <td>0.5</td>	Pb	1	5	5	5	0.5	0.5	0.5		
Ni 2A 200 20 5 20 2 0.5 V 2A 100 10 1 10 1 0.1 Ag 2B 150 10 7 15 1 0.7 Au 2B 100 100 1 10 10 0.1 Au 2B 100 100 1 10 10 0.1 Au 2B 100 10 1 10 10 0.1 Ir 2B 100 10 1 10 1 0.1 Os 2B 100 10 1 10 1 0.1 Pd 2B 100 10 1 10 1 0.1 Rh 2B 100 10 1 10 1 0.1 Se 2B 150 80 130 15 8 13 TI 2B 8	Со	2A	50	5	3	5	0.5	0.3		
V 2A 100 10 1 10 1 0.1 Ag 2B 150 10 7 15 1 0.7 Au 2B 100 100 1 10 10 0.1 Ir 2B 100 10 1 10 10 0.1 Ir 2B 100 10 1 10 1 0.1 Os 2B 100 10 1 10 1 0.1 Os 2B 100 10 1 10 1 0.1 Pd 2B 100 10 1 10 1 0.1 Rh 2B 100 10 1 10 1 0.1 Ru 2B 100 10 1 10 1 0.1 Se 2B 100 10 1 0.1 0.1 0.1 Se 2B 100 10 1 0.1 0.1 0.1 Se 3 1400	Ni	2A	200	20	5	20	2	0.5		
Ag2B1501071510.7Au2B100100110100.1Ir2B1001011010.1Os2B1001011010.1Os2B1001011010.1Pd2B1001011010.1Pt2B1001011010.1Rh2B1001011010.1Ru2B1001011010.1Se2B1001011010.1Se2B1001011010.1Se2B1508013015813TI2B8880.80.80.8Ba314007003001407030Cu3300030030300300303Li35502502555252.5Mo330001500103001501Sb31200902012092Sn36000600600600600600600	V	2A	100	10	1	10	1	0.1		
Au2B100100110100.1Ir2B1001011010.1Os2B1001011010.1Os2B1001011010.1Pd2B1001011010.1Pt2B1001011010.1Rh2B1001011010.1Ru2B1001011010.1Se2B1508013015813TI2B8880.80.80.8Ba3140070030014070030Cr3110001100311001100.3Cu3300030030030030030Sb31200902012092Sn3600060060060060060060	Ag	2B	150	10	7	15	1	0.7		
Ir2B1001011010.1Os2B1001011010.1Pd2B1001011010.1Pt2B10010110010.1Rh2B10010110010.1Ru2B10010110010.1Ru2B10010110010.1Se2B1508013015813TI2B8880.80.80.8Ba3140070030014070030Cr3110001100311001100.3Cu33000300303003003030Li35502502555252.5Mo330001500103001501Sb31200902012092Sn36000600606006006060	Au	2B	100	100	1	10	10	0.1		
Os2B1001011010.1Pd2B1001011010.1Pt2B1001011010.1Rh2B1001011010.1Ru2B1001011010.1Ru2B1001011010.1Se2B1508013015813TI2B8880.80.80.8Ba314007003001407030Cr3110001100311001100.3Cu33000300303003003030Li35502502555252.5Mo330001500103001501Sb31200902012092Sn3600060060060060060	Ir	2B	100	10	1	10	1	0.1		
Pd2B1001011010.1Pt2B1001011010.1Rh2B1001011010.1Ru2B1001011010.1Ru2B1001011010.1Se2B1508013015813TI2B8880.80.80.8Ba314007003001407030Cr3110001100311001100.3Cu33000300303003003030Li35502502555252.5Mo330001500103001501Sb31200902012092Sn36000600600600600600	Os	2B	100	10	1	10	1	0.1		
Pt2B1001011010.1Rh2B1001011010.1Ru2B1001011010.1Se2B1508013015813TI2B8880.80.80.8Ba3140070030014070030Cr311000110031100011000.3Cu33000300300300300300Li35502502555252.5Mo3300015001030015001Sb31200902012092Sn36000600600600600600600	Pd	2B	100	10	1	10	1	0.1		
Rh2B1001011010.1Ru2B1001011010.1Se2B1508013015813TI2B8880.80.80.8Ba314007003001407030Cr3110001100311001100.3Cu33000300300300300300300Li35502502552552.5Mo3300015001030015001Sb31200902012092Sn36000600600600600600	Pt	2B	100	10	1	10	1	0.1		
Ru2B1001011010.1Se2B1508013015813TI2B8880.80.80.8Ba314007003001407030Cr3110001100311001100.3Cu33000300300300300300300Li35502502552552.5Mo3300015001030015001Sb31200902012092Sn36000600600600600600600	Rh	2B	100	10	1	10	1	0.1		
Se2B1508013015813TI2B8880.80.80.8Ba314007003001407030Cr3110001100311001100.3Cu33000300300300300300Li35502502555252.5Mo3300015001030015001Sb31200902012092Sn36000600600600600600	Ru	2B	100	10	1	10	1	0.1		
TI2B8880.80.80.8Ba314007003001407030Cr3110001100311001100.3Cu3300030030030030030030Li35502502555552552.5Mo33000150010300015001Sb360006006060060060	Se	2B	150	80	130	15	8	13		
Ba314007003001407030Cr3110001100311001100.3Cu33000300300300300300Li35502502555552552.5Mo33000150010300015001Sb31200902012092Sn3600060060060060060	TI	2B	8	8	8	0.8	0.8	0.8		
Cr3110001100311001100.3Cu3300030030030030030030Li35502502555252.5Mo3300015001030015001Sb31200902012092Sn3600060060060060060	Ba	3	1400	700	300	140	70	30		
Cu3300030030300300303Li35502502555252.5Mo3300015001030015001Sb31200902012092Sn360006006060060060	Cr	3	11000	1100	3	1100	110	0.3		
Li35502502555252.5Mo3300015001030015001Sb31200902012092Sn360006006060060060	Cu	3	3000	300	30	300	30	3		
Mo330001500103001501Sb31200902012092Sn3600060060600606	Li	3	550	250	25	55	25	2.5		
Sb 3 1200 90 20 120 9 2 Sn 3 6000 600 600 600 600 60	Мо	3	3000	1500	10	300	150	1		
Sn 3 6000 600 60 600 60 6	Sb	3	1200	90	20	120	9	2		
	Sn <mark>3</mark>		6000	600	60	600	60	6		

* § *

Roche

Drug Product "Platform Approach"

Identify a representative worst-case Product per platform:

Simplify: Use existing Materials / Data

Water Feedwater meets WHO Drinking Water standards PLUS

- Water meets compendial water quality requirements PLUS
- Controls in place

DS Intentionally added metals / EI are main concern

- Information may be proprietary

CCS Jenke et al, PDA J Pharm Sci Technol Vol. 69(1), p 1-48 (2015) PDA J Pharm Sci Technol Vol. 67(4), p 645-57 (2013)

Overview article: A. Teasdale et. al , Pharmtech Europe, 2015(3), p12ff

ICH Training Modules (Module 8 Case studies)

CCS Container Closure Systems

First example of a data sharing initiative

THEORETICAL RISK:

Especially in the case of liquid formulations there is risk of metals leaching out of CCS into the formulation

WHAT DOES THE DATA SAY?

Jenke et al: Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review

PDA J Pharm Sci Technol., January/February 2015, 69:1-48

Section 5.3 – Probability of elemental leaching into solid dosage forms is minimal and does not require further consideration in the risk assessment

CCS Container Closure Systems (2) *Extraction Study for Type 1 Glass Tubing*

Glass supplier extraction study: $V_A = 35.2 \text{ cm}^2$; Fill: 10ml; Rel: 3.52 cm²/ml

- Worst Case: Any CCS with a relative surface < 3.52 cm²/ml is covered
- All Q3D elements were < 0.01ppm in the extract.

Extrapolation to smaller volumes (larger rel. surface) is easy:

$$c_{glass}[ppm] = \frac{Rel.Surface \times 0.01}{3.52}$$

So we're looking at really small contributions!!

Example: <u>Liquid</u> filling line: ICH Case Study 3 (Old; "Before Jenke")

- "It was assumed that the entire EI content of the glass container had leached into the DP. Where no information was available, the EI was tested in the DP.
- The expected contributions from As and Pb were close to their respective control thresholds. Actual levels "found" were <0.05 pppm

Equipment

Reductio ad Absurdum

Worst-Case assumptions: "Ridiculous erosion levels" \Rightarrow Easy to refute

Example: 316L Hammermill used to make a solid oral DP

- 316L Steel: ≈17% (w/w) Cr, ≈11% Ni. Surface 1.43 m², ρ = 8 g/cm³
- Equipment is 3000 lots (20yrs at 150 lots)
- Batch size 300kg assumed MDD of 10g DP/Day
- PDEs: 11000µg/day for Cr, and 200 µg/day for Ni,
- Total lifetime erosion: 510/14mm before PDEs of Cr/Ni are exceeded

Example: <u>Liquid</u> filling line: ICH Case Study 3

- "It was assumed that the most rigorous cleaning conditions used..., would incur an erosion of not more than approx. 10 nm" (10nm=passivation layer)
- With a surface area of 1265 m^2 , a total contribution of e.g. 0.3ppm Ni was predicted for the equipment train \Rightarrow Negligible!

Drug Substance

Synthetic Small Molecule DS

- Main concern: Intentionally added EIs reagents / catalysts
 - Effective removal has been a quality requirement even before Q3D
 - Organic solvents \rightarrow Low risk
 - El removal is validated

Recombinant Biotech DS are low risk

- All our Biotech DS have been subject to a risk evaluation + verification (baseline) testing.
- DP: Compounding risk has been assessed \rightarrow Also low risk
- (Q3D Sec 5.7) "Potential elemental impurity sources included in drug product manufacturing (e.g., excipients) and other environmental sources should be considered"

Data Sources

Data Sharing

Q3D Sec. 5.5: "The data that support the risk assessment can come from:

- Published literature, data (Someone else has already done it \rightarrow Data sharing
- Supplier Information; However: Suppl. qualification is required (cGMP)
- Testing of components of the drug product, testing the DP
- Data sharing FDA/IPEC/Industry 2015:
- Li et al., J.Pharm.Sciences, Sept. 2015, DOI 10.1002/jps.24650
 - 24 Elements, 205 excipients samples, > 4900 determinations
 - Overall low EI levels. Some Pb, Cd, As in mined/marine derived excipients

Data sharing Consortium (founded 2015)

- 200 Excipients, >1700 datapoints

- Data anonymised and checked by Lhasa https://www.lhasalimited.org/research-and-collaboration/Elemental-Impurities.htm <u>http://www.lhasalimited.org/</u>
- Data sharing greatly reduces "anxiety" associated with small sample sets Methods have been validated.

Standardize: Rationale

Tech	nical Ratio	onale for predictive calculations to support Elemental Impurities Risk assessn	nents for
Ster	lie Drug Pr	OQUCIS	n
	114	Platform approach: Selecting the Worst-case Drug Product	6
	12	Evaluate	
	1.3	Summarize (Control)	7
2.	Contribut	tion of water	7
3.	Contribu	tion of excipients	8
4.	Contribut	tion of Drug Substance (DS)	9
	4 1	Biologics Drug Substance	9
	4.2	Small Molecule Drug Substance	9
5.	Contribu	tion of Equipment chain	10
	5.1	Stainless Steel	10
	511	Stainless steel Introduction	10
	5.1.2	Stainless steel conclusion	
	5.2	Other materials from the equipment chain	13
	5.2.1	Silicones	
	5.2.2	Polyvinylidene Fluoride	
	5.2.3	Polycarbonate	
	5.2.4	Polyethersulfone	19
	5.2.5	Polypropylene	19
	5.2.6	Thermoplastic elastomers	21
	5.2.7	Polytetrafluoroethylene	21
	5.2.8	Other equipment chain materials Conclusion	22
	5.3	Equipment chain elements to be considered for the risk assessment	22
6.	Contribu	tion of Primary Packaging	23
	6.1	Glass	23
	6.1.1	Introduction	23
	6.1.2	Calculations	23
	6.2	Rubber	
	6.2.1	Introduction	25
	6.2.2	Calculations	
	6.3	Staked-in needle	27
	6.4	Needle shield	27
7.	Overall s	ummary and conclusion	27
8.	Abbrevia	tions	30

Excipients Example 0.5mg Tablet Sources: CoAs + Own test results

	Material [mg/U]										
		ns	Starch	Corn-	Lactos	Talc	FaO	Mg-			
		03	Pregl.	starch	e mh	Taic	160	Ster.			
El	30%CT		ontonto	[mmm]					Sum	Cornst.	2-Sum
	at MDD		ontents	[ppm]					Conc.	Actual	Conc.
As	0.75	0.6	1.5	1.5	0.45	0.1	1	0.2	1.21		
Cd	0.25	1.9	0.5	0.5	0.15	0.04	1	0.03	0.41		
Hg	1.5	1.8	3	3	0.9	0.02	0.5	0.04	2.42		
Pb	0.25	1	0.5	0.5	0.15	1	5	0.13	0.42		
Со	2.5	1.2	5	5	1.5	0.6	10	0.07	4.05		
Ni	10	1.8	20	20	6	7.3	70	0.19	16.23		
V	5	2.4	10	10	3	4.3	10	0.7	8.09		

Evaluate - Summarize

Express Risk(s) as expected contamination

Courtesy of M. Schweitzer, Novartis, 2017

Q3D Risk Based Approach and Control Strategy

Risk categories follow PDE Product risk assessment Bernental Impurities that may exceed the control threshold but not the PDE Bernental Impurities that may be present below the control threshold Bernental Impurities that may be present below the control threshold Bernental Impurities that may be present below the control threshold Bernental Impurities excluded form Risk Assessment (Q3D Table 5.1)

Default C+T Strategy Option

Accept on certificate/CoA/questionnaire. Reduced or no monitoring

As above with (reduced when justifiable) monitoring - Risk based approach enables you to leverage grouping / matrixing

Qualify (Initial Baseline Testing) representative Lots (\geq 3). Define (periodic) testing frequency as appropriate.

If >PDE, material not ok. Proceed to mitigate.

Summarize Standardized Report

Technical Plan / Report

Quality Risk Management (QRM) Preliminary Hazard Analysis (PHA) Plan for ICHQ3D

DOC	NO TE	C-0108939	VERSION 3.0	STATUS	Approved	APPROVED DATE
4.	ICHO	Q3D Concep	ts and Limits Calculation	ons		3
	1.	ICHQ3D Li	mits for Permitted Dail	y Exposure		3
	2.	Calculatio	n of max Daily Exposur	e of El from the	Component	s of the DP 4
	3.	Calculatio	ns of Daily Exposures, a	and Concentrati	on Limits	5
	4.	Modes of	Contamination			8
5.	Gen	eral Process				11
6.	PHA	Methodolo	gy			12
	1.	Risk Analy	sis PHA Template			12
	2.	Grouping	/ Matrixing			14
	3.	Risk Analy	sis & Risk Evaluation C	riteria		15
	4.	Risk Sever	ity Matrix			17
7.	Eval	uation: Deri	ving the Control and To	esting Strategy		18
8.	Repo	orting				19
9.	Resp	onsibilities				19
	1.	Roles / RA	CI			19
	2.	Risk Comn	nunication			19

Conclusions / Summary

The implementation of ICH Q3D provides an opportunity to put into practice a risk and science based approach to control of EI

- Leveraging of "worst-case" approach and
- pre-existing knowledge / data / cGMP controls
- Enables reduction of testing

The observed **El content** of most products is significantly below the control threshold (i.e. <30% PDE) for all elements, with few exceptions

- Perceived risk is higher than actual risk of EI contamination

Data sharing: Benchmarking of own results against peers

- "Safety in numbers"
- Offers Cross-check of own RA results and test data
- Has helped in simplification of our own approach

THANKS

Stephanie Knueppel,

Markus Goese,

Andrew Teasdale

Mark Schweitzer

Michael James GSK, UK

The colleagues in the Datasharing Consortium

The folks at Lhasa, especially Crina Heghes and Wiliam Nye

And a host of others...

F. Hoffmann-La Roche Ltd, CH

F. Hoffmann-La Roche Ltd, CH

Astra Zeneca, UK

Novartis, CH

Backup:

El contributions from WFI

Production of WFI

- High Quality purified water used
- Distillation, ionic exchange resins
- Filter
- CO₂- Degassing
- Reverse osmosis
- Ozonization

Control mechanisms for WFI

- •Monitoring for PW and WFI quality
- •Aerobic microorganisms (daily)
- •Bacterial Endotoxin (weekly)
- •Conductivity (Inline)
- •TOC (Inline)
- •Appearance, clarity, colour, odour, Nitrate (monthly)
- •Particles ≥10µm und ≥25µm (monthly)
- Warning levels below acceptance criteria established (safety margin)
 Data Trending shows constant quality over years (conductivity and TOC data constantly 10-6 times below acceptance limit)

Q3D Control Options: Component Approach is preferred

Option 2b

Permitted concentration limits of elements in individual components of a product with a specified daily intake:

Option 1

<u>Common</u> permitted concentration limits of elements across drug product components for drug products with daily intakes of not more than <u>10 grams</u>

Option 2a

<u>Common</u> permitted concentration limits across drug product components for a drug product with a specified daily intake:

Option 3

Finished Product Analysis

EMA guideline confirms concerns over this approach

$$PDE(\mu g/day) \ge \sum_{k=1}^{N} C_k \cdot M_k$$
 2b: Generally the preferred option

- k = an index for each of N components in the drug product
- C_k = permitted concentration of the elemental impurity in component k (µg/g)
- $M_k = mass of component k in the maximum daily intake of the drug product (g)$

ICH Training Materials

- Training Module 0: Introduction
- Training Module 1: Other Routes of Administration

- Training Module 2: Justification for Elemental Impurity Levels Higher than an Established PDE
- Training Module 3: Acceptable Exposures for Elements without a PDE
- Training Module 4: Large Volume Parenteral Products
- Training Module 5: Risk Assessment and Control of Elemental Impurities
- Training Module 6: Control of Elemental Impurities
- Training Module 7: Converting between PDEs and Concentration Limits
- **Training Module 8: Case studies**
 - 1a: Solid oral dosage form (submission+internal), 2: Parenteral product,3: Biotechnological product
- Training Module 9: Frequently Asked Questions

Ph.Eur.9.3 5.20

Replacement of the EMA guideline on metal catalysts and metal reagents by the principles of the ICH Q3D guideline

No verbatim reproduction to avoid introducing a "Ph. Eur. Copy" of the guideline. The enforceable text is the version as published by EMA. Only introduction and scope of Q3D will be reproduced in 5.20

- The ... Ph. Eur. applies this guideline to all (human) medicinal products via the general monograph Pharmaceutical preparations (2619) unless excluded from the scope of the guideline
- Unless otherwise prescribed, tests for elemental impurities are not mentioned in individual monographs
-manufacturers ...shall assess and control elemental impurities in the medicinal product using the principles of risk management.

Pheur 29(4): Removal of specific limits from individual monographs

Regulatory expectations

FDA: Submission of product specific RA reports (summaries)

- Legacy: Integration into Annual Report 2018, even if no changes
- Analytical procedures to follow USP <232> <233>

EMA: Summary of the RA required. CTD (Module 2 and Module 3).

- Full RA at site (Inspections)
- Legacy: Submission of RA report only required if adaptation of product control strategy due to Q3D
- Re-assesment for changes + periodic (unplanned changes)

CAN: Statement of ICH Q3D-compliance has to be contained in every Drug Product Specification from January 1st, 2018

- Module 3.2.P.5.6 Justification of Specifications
- The RA should be documented and available for inspection and any controls should be implemented
- Legacy: Notification of any Q3D driven changes

Full View Excipients Example 0.5mg Tablet

	Material [mg/U]										
			Starch	Corn-	Lactos	Talc	FaO	Mg-			
		03	Pregl.	starch	e mh		160	Ster.			
El	30%CT		ontonto	[nnm]					Sum	Cornst.	2-Sum
	at MDD	LUAL	ontents	[hhu]		Conc.	Actual	Conc.			
As	0.75	0.6	1.5	1.5	0.45	0.1	1	0.2	1.21	0.2	0.31
Cd	0.25	1.9	0.5	0.5	0.15	0.04	1	0.03	0.41	0.03	0.08
Hg	1.5	1.8	3	3	0.9	0.02	0.5	0.04	2.42	0.04	0.37
Pb	0.25	1	0.5	0.5	0.15	1	5	0.13	0.42	0.07	0.12
Со	2.5	1.2	5	5	1.5	0.6	10	0.07	4.05	0.3	0.79
Ni	10	1.8	20	20	6	7.3	70	0.19	16.23	0.3	2.59
V	5	2.4	10	10	3	4.3	10	0.7	8.09	0.3	1.37

Validated spreadsheet!

Doing now what patients need next