

Control of Elemental Impurities A Canadian Pharmaceutical Generic Company Perspective

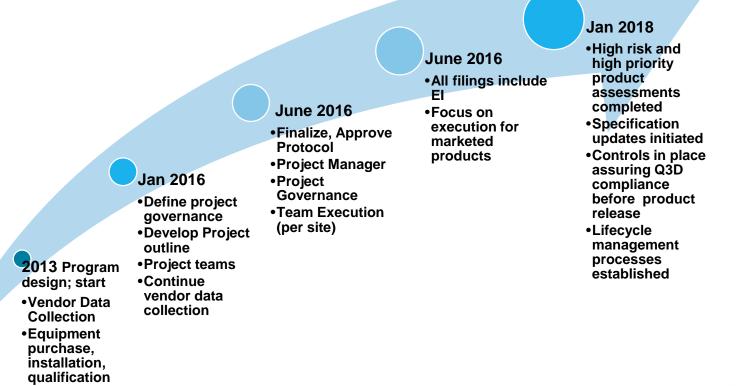
PQRI/USP Workshop November , 2017 Rockville MD Presented by: Elisabeth Kovacs Chief Scientific Officer, Chem & Anl Sci Global Research & Development Apotex Inc. Toronto, Canada

Outline

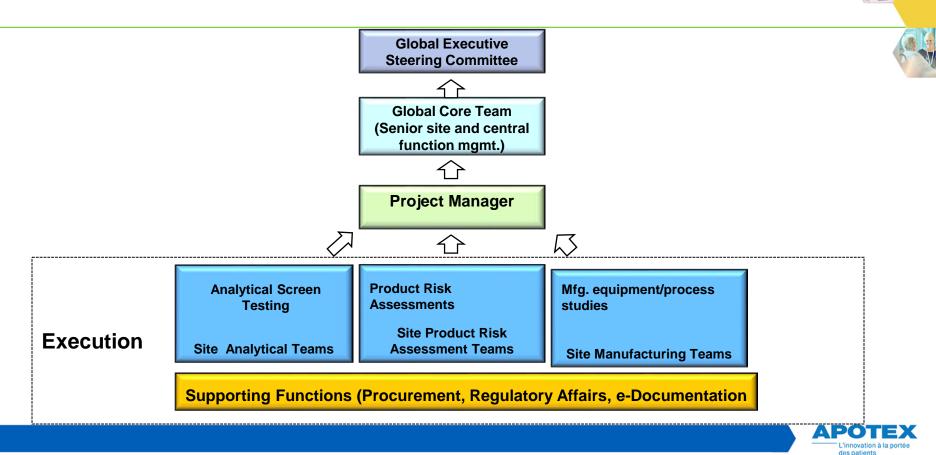
THE REAL PROPERTY IN

- Governance
- Approach to identification, analysis, evaluation, and Control Strategy
- Life Cycle Concept applied to EI
- Some points that still need clarification

Implementation dates



FDA	Health Canada	ЕМА
June 1, 2016 – new submissions (ANDA)	New submissions (ANDS) December 31 st 2016	June 1, 2016 – new submissions
January 1, 2018 – marketed products	Submission of a new supplemental (A)NDS for a change to a marketed product December 31 st , 2016 January 1, 2018 – marketed products	December 1, 2017 – marketed products


Road Map to El Control

Governance

Implement a control strategy to limit elemental impurities in the drug product

- Identify known and potential sources of elemental impurities that may find their way into the drug product
 - Determine the probability of observance of a particular elemental impurity in the drug product

Analyze

Control

- Compare the observed or predicted levels of elemental impurities with the established PDE
 - Document and implement a control strategy to limit elemental impurities in the drug product

Implement a control strategy to limit elemental impurities in the drug product

Identify metals that can be present (class 1 included by default)

Components

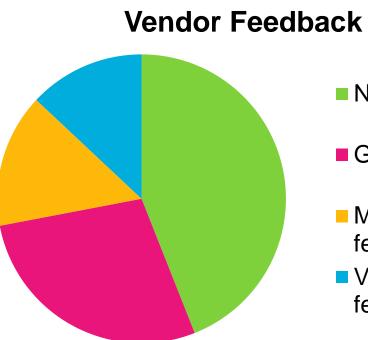
(solvents)

Manufacturing Equipment

Packaging materials

Calculate the acceptable metal impurity limits based on PDE using calculation options 1-3

• Evaluate and compare levels observed with PDE


Control strategy

- Projected levels found below the Control Threshold
- Document in risk assessment
- Projected Levels exceed Control Threshold or too much variability (below the PDE)
- include in specifications (routine control)
- Exceed PDE- investigate source and develop adequate Control Strategy*

Identify- Components API:

- Vendor information:- verify
- No vendor input or input inadequate- full metal scan
 - Commitment to provide by December 2017

No Feedback

Good feedback

Medium feedback

Very poor feedback

			ion 1	Actual batch data	
Elemental Impurity	Parenteral specification	Target limit ^{a)}	Batch 10401620033	Batch 10401620034	Batch 10401620035
Ag	1	0.30	<0.09	<0.09	<0.09
AI ^{b)}	150	45	<13.5	<13.5	<13.5
As	1.5	0.45	<0.14	<0.14	<0.14
Cd	0.2	0.06	<0.02	<0.02	<0.02
Co	0.5	0.15	<0.05	<0.05	<0.05
Cr	110	33	<9.9	<9.9	<9.9
Cu	30	9	<2.7	<2.7	<2.7
Fe ^{b)}	150	45	<13.5	<13.5	<13.5
Hg	0.3	0.09	< 0.03	<0.03	< 0.03
Mn ^{b)}	150	45	<13.5	<13.5	<13.5
Mo	150	45	<13.5	<13.5	<13.5
Ni	2	0.60	<0.18	<0.18	<0.18
Pb	0.5	0.15	< 0.05	<0.05	< 0.05
Sb	9	2.7	< 0.81	<0.81	<0.81
Se	8	2.4	<0.72	<0.72	<0.72
Ti b}	150	45	<13.5	<13.5	<13.5
v	1	0.30	< 0.09	<0.09	<0.09
w D)	150	45	<13.5	<13.5	<13.5
Zn ^{-b)}	150	45	<13.5	<13.5	<13.5
Zr ^{b)}	150	45	<13.5	<13.5	<13.5

 ^{a)} 30% of the parenteral specification
 ^{b)} These elements are not described in ICH Q3D guideline and are considered as of low toxicological concern. It is taken as specification the value of the element less restrictive (Molyhdenum: 150nom)

Reports of Limited Reports on the 7 and provides usefulness: information on class 2B ICH Q3D Intentionally Element considered for Risk Results observed Element No information Added (Yes/No) Management (Yes/No) Class Absent Yes re: number of Cadmium No Absent Yes No 1 Lead batches tested Yes Absent Т No Arsenic Absent L No Yes Mercury Yes Absent No Cobalt 2A Absent Yes 2A No Vanadium Yes Absent No Nickel 2A N/A Thallium 2BNo No N/A 2BNo Gold No N/A No 2BNo Palladium No N/A 2BNo Iridium No clarity re: N/A 2BNo No Osmium route of N/A 2BNo Rhodium No N/ANo Ruthenium 2BNo N/A 2BNo No Selenium N/A 2BNo No Silver N/A No No Platinum 2BNo N/A 3 No Lithium N/A No No Antimony 3 No N/A 3 No Barium **Helps with** No N/A 3 No Molybdenum No No N/A understanding 3 Copper No N/A 3 No Tin relevance

No

N/A

¹ 'Absent' signifies that the levels are observed 30% below the ICH Q3D Option 1 limit for the individual element or the maximum observed levels for individual element is reported as 'Maximum level \leq 'X' ppm.

No

3

Chromium

APOTEX L'innovation à la portée des patients

Reports of No usefulness:

Elemental Impurity	Class	Element Intentionally Added? (Y/N)	Likely to be Present (Y/N)	ICH Q3D Option 1 Limit (µg/g)		Option .imit	If available, please provide analytical test results (ug/g)	Analytical Method Used (and Limit of Detection if Available)	Comments including Testing Plan (frequency)	
				1.5 (O)	Yes 🗖	No 🗆	1			
Arsenic (As)	1			1.5 (P)	Yes 🗖	No 🗆	[]			
				0.2 (I)	Yes	No	L - 1			
		· · · · · ·		0.5 (O)	Yes	No 🗆	NOT	APPLICABLE	-	Thenk you for
Cadmium (Cd)	1	· · · · ·		0.2 (P)	Yes	No 🗆	, T	IT-ICPRIL-		Thank you for
				0.2 (I)	Yes 🗖	No 🗆				NOTHING!!!
Elemental Impurity	Class	Element Intentionally Added? (Y/N)	Likely to be Present (Y/N)	ICH Q3D Option 1 Limit (µg/g)		option Limit	If available, please provide analytical test results (ug/g)	Analytical Method Used (and Limit of Detection if Available)	Common including Testi Plan (frequency	
	1	\square		3 (O)	Yes 🗖	No 🗆				
Mercury (Hg)	1 1			0.3 (P)	Yes 🗖	No 🗆				
	1 '	[]		0.1 (I)	Yes 🗖	No 🗆				
	1 1	(· · · · · · · · · · · · · · · · · · ·		0.5 (0)	Yes 🗖	No 🗆				
Lead (Pb)	1	()		0.5 (P)	Yes	No 🗆	1			
	/			0.5 (I)	Yes	No 🗆				
		[5 (O)	Yes 🗖	NO				
Cobalt (Co)	2A			0.5 (P)	Yes 🗖	No 🗆				
	<u> </u>		_	0.3 (I)	Yes 🗖	No 🗆	Kor			
				10 (O)	Yes 🗖	No 🗆		RA-SARIE		
Vanadium (V)	2A	l	L'	1 (P)	Yes 🗖	No 🗆	l l	1		
		ļ]	'	0.1 (I)	Yes 🗆	No 🗆	-			
	/	ļ]	L'	20 (O)	Yes 🗆	No 🗆	1		\mathbf{k}	
Nickel (Ni)	2A	J	└────′	2 (P)	Yes 🗖	No 🗆	1			
			í'	0.5 (I)	Yes 🗆	No 🗆				

ICH Q3D Guideline for Elemental Impurities, Dec. 16, 2014. <u>http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/O3D/O3D_Step_4.pdf</u> *Always include Class 1 and Class 2A in assessment, as outlined in the document above.

Identify; Components, Excipients

- Vendor input
- Prior Knowledge (literature, publications)
- Internal screening
 - Low risk (vegetable and synthetic)
 - For each of the excipients used we established the maximum daily intake
 - So far, none exceed 10g/day
 - Screening is done against CT, option 1.
 - High risk (minerals, mined materials)
 - Several do not meet option 1 limits
 - These are considered to be included on the CofA for routine testing with an acceptance criteria PDE based

Identify: Manufacturing Equipment

- Evaluate unit operations with respect to probability of contamination
 - Low risk
 - High risk (temperature, friction, solution,)
- Equipment inventory and composition
 - Typically, test for (Class 1 and 2A; + 2B if applicable)

Identify: Manufacturing Equipment

				Kors	ch Pł	H 800	: Col	llect sa	ample	es of 1	00g a	fter c	ompre	ession	for e	ach o	f the t	ooling	used				
	Elements to be Tested 'If not intentionally added' Elements to be Tested 'if intentionally added' (Elements contained in Product Contact Surface of the Equipment)																						
	intentionally added'								(E	lemer	nts co	ntaine	ed in P	roduc	t Cor	itact S	Surfac	e of t	he Eq	uipme	ent)		
Cd	Pb	As	Hg	Co	<	Ni	TI	Au	Pd	lr	Os	Rh	Ru	Se	Ag	Pt	Li	Sb	Ba	Мо	Cu	Sn	Cr
~	 Image: A start of the start of	~	~	~	<	~												 ✓ 		<			~

										E	Encap	sulato	ors										
	Elem	ents to	b be T	ested	ʻlf no	t					EI	emen	ts to b	e Tes	ted 'if	inten	tionall	y add	eď'				
	intentionally added'								(E	lemer	nts co	ntaine	ed in F	roduc	t Con	tact S	Surfac	e of t	he Eq	uipme	ent)		
Cd	Pb	As	Hg	Co	<	Ni	TI	Au	Pd	lr	Os	Rh	Ru	Se	Ag	Pt	Li	Sb	Ba	Мо	Cu	Sn	Cr
~	 Image: A start of the start of	~	~	~	~	~														~	 Image: A set of the set of the		~

										For	Table	et Proc	ducts										
	Elements to be Tested Elements to be Tested 'if intentionally added'																						
'If not intentionally added' (Elements contained in Product Contact Surface of the Equipment)																							
Cd	Pb	As	Hg	Co	<	Ni	TI	Au	Pd	lr	Os	Rh	Ru	Se	Ag	Pt	Li	Sb	Ba	Mo	Cu	Sn	Cr
 Image: A set of the set of the	~	~	~	<	<	<												 ✓ 		~	 ✓ 		~

										For (Capsu	le Pro	ducts	;									
	Elements to be Tested 'If not Elements to be Tested 'if intentionally added'																						
intentionally added' (Elements contained in Product Contact Surface of the Equipment								ent)															
Cd	Pb	As	Hg	Co	 	Ni	TI	Au	Pd	lr	Os	Rh	Ru	Se	Ag	Pt	Li	Sb	Ba	Mo	Cu	Sn	Cr
 ✓ 	×	~	~	~	~	<														~	 ✓ 		~

Identify Packaging

- For solid dose low risk
- For liquids/solutions high to medium risk
 - Prior Knowledge (literature, publications, Compendia)
 - Vendor information- no feedback

Analysis : ICH Q3D limit options

Opt	Components	Intermediates	Product	Benefits	Negatives
ion					
1	Risk assessed/tested assuming common concentrations and 10 grams daily intake	Risk assessed to confirm contamination (or the lack thereof) from most aggressive processing steps	No need for product testing	Facilitates risk assessment; i.e. components can be mixed in any proportions (<10g/day) Can significantly reduced routine testing	High Initial investment Relies heavily of vendor's input
2a	Risk assessed/tested assuming common concentrations for a product with a specified daily intake	Risk assessed to confirm contamination (or the lack thereof) from most aggressive processing steps	No need for product testing	Same as above	Same as above
2b	Risk assessed/tested assuming uncommon component concentrations set at levels that would ensure the PDE is met in the final product	Risk assessed to confirm contamination (or the lack thereof) from most aggressive processing steps	No need for product testing	Facilitates risk assessment, but need to know the composition of the drug product and have additional knowledge regarding the content of each elemental impurity in the components of the drug product.	It can be Product Specific
3	Knowledge is limited	No knowledge available	A must	Limited knowledge of components; equipment contaminants have to be included in drug product testing	Batch tested at release, Strongly discouraged by regulators

Analyze: Analytical Procedure (s)

- Analytical Procedure- USP <233>
 - Validated* for all class 1 and class 2A (system)
 - Verification (run including accuracy (recovery)) material/product specific with protocol defined acceptance criteria (USP) to accept/reject results

*

expanded

Analytical Procedure Validation Scheme

L'innovation à la portée des patients

MV Parameters	USP <233>	USP <233> Alternate Limit Test	USP <233> Alternate Quanti- tative Test	EQ. Manuf's Recommen dation	FDA Food	General	Verification	
Drift: NMT 20%	x	x	x	x			x	Ī
Recovery: 70-150%			x	x			x	Ι
Stability Check (std 0.25J) 6 runs								I
Precision: 6 Prep at J		x	x	x		x		I
Intermediate Precision(Ruggedness)			x	x		x		I
Calibration blank					x	x	x	I
Std1 (0.25J)						x	x	
Std 2 (0.5J)	x		x	x	х	x	x	I
Std (0.8J)		x						I
Spike 1 (0.25J)						x	x	
Spike 2 (0.5J)								
Spike 3 (1.5J)					x	x	x	
Std (1 J)		x	x					
Std 3 (1.5J)	x		×	x	x	x	x	
Check-1 Std 3 (1.5J)					x	x	x	
Reagent Blank (Matched Matrix)	x				x	x	x	
Sample 1,	x					x	x	
Run any subsequent samples							x	
Check Std every 10 sample						x	x	
Specificity								L.

Testing

• API

- Verification: 3-5 lots
- Full assessment: 3-5 lots
- Excipients:
 - Low risk: 3-5 lots
 - High risk: as needed (NLT 5)
- Manufacturing equipment: varies
- Packaging for liquids, solutions:
 - Included in the stability program

Analyze: Risk Evaluation for metal impurity contamination for Solid Dose

Low risk Analysis

High risk Analysis

- 1. Test Sample "0" and sample "5". If results indicate that there is no increase in metal impurity content stop testing. This will support conclusion of no contamination for unit 1 to unit 5
- 2. If results show increase in one or two of the metal impurities continue testing backwards
- up to the sample where result show no change.
- Evaluate in increase with respect to significance and adopt appropriate Control Strategy. (this step if necessary will need to be further assessed for impact.

 Unit operations of high risk are evaluated individually (heat, high shire, temperature)



 Test input and output sample. If results indicate that there is no increase in metal impurity content will support conclusion of no contamination
 Evaluate in increase (if) with respect to significance and adopt appropriate Control Strategy. (this step if necessary will need to be further assessed for impact)

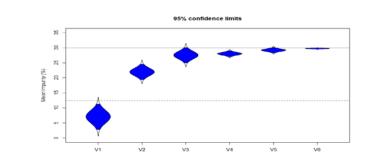
Control Strategy: All levels <30% of PDE, no routine testing necessary 95% confidence

MDI	%	PDE ppm	CT (ppm)
1g or less	45	5ppm	1.5
1-2g	68	2.5ppm	0.75
2-3g	82	1.7ppm	0.51
3-4g	87	1.25ppm	0.38
4-5g	90	1ppm	0.3
10g	100	0.5ppm	0.15

• 1-sided 95% CI for the mean:

 $(-\infty, t_{\alpha,n-1} * SEM)$

S.E.M^{*}.: $Var(\overline{X}) = \frac{Var(Batch)}{n_{batch}} + \frac{Var(Analytical)}{n_{batch}*n_{rep}}$


Control threshold

- Guidance 95% confidence
 - Sample to sample
 - Analytical procedure (MU)- SD
 - How far from the threshold
 - (limit test at PDE?)
- Increasing n_{batch} has a direct effect on lowering total variability of \overline{X}
- Increasing n_{rep} has an effect only on one portion of the total variability of \bar{X}

Control Strategy: All levels <30% of PDE, no routine testing necessary 95% confidence

5g/day

MDI	%	PDE ppm	CT (ppm)
1g or less	45	5ppm	1.5
1-2g	68	2.5ppm	0.75
2-3g	82	1.7ppm	0.51
3-4g	87	1.25ppm	0.38
<u>4-5g</u>	<u>90</u>	<u>1ppm</u>	<u>0.3</u>
10g	100	0.5ppm	0.15

• 1-sided 95% CI for the mean:

 $(-\infty, t_{\alpha,n-1} * SEM)$

S.E.M.*: $Var(\overline{X}) = \frac{Var(Batch)}{n_{batch}} + \frac{Var(Analytical)}{n_{batch}*n_{rep}}$

- Control threshold
 - Guidance 95% confidence
 - Sample to sample
 - Analytical procedure (MU)- SD
 - How far from the threshold
 - (limit test at PDE?)
- Increasing n_{batch} has a direct effect on lowering total variability of \overline{X}
- Increasing n_{rep} has an effect only on one portion of the total variability of \bar{X}

Control Strategy- summary

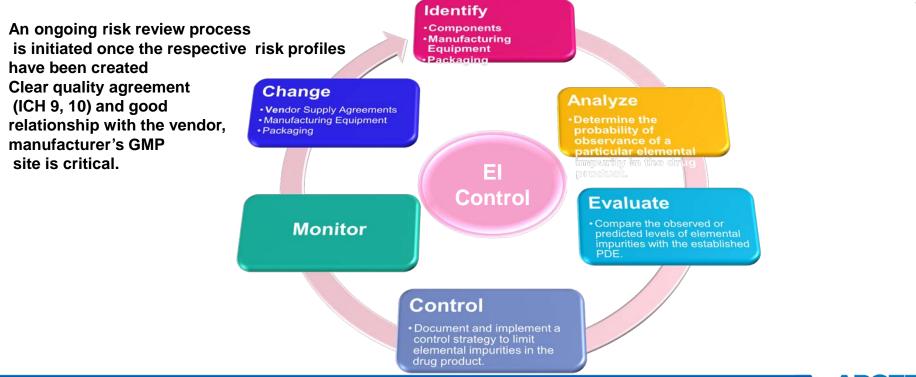
- Essentially for >90% materials (samples; API, Excipients, Product, etc.) meet the "Below LOQ " criteria therefore no further testing or control is necessary
- Remaining 10%

- Typically antibiotics
- Products with wide range of strengths (ug to mg)
- Some minerals Eg. (CaCo3)
- These are being assessed and decisions made on case by case basis to ensure PDE is met

Control Strategy justification*

(this table needs to be created for each product to demonstrate compliance)

Table A4.1. Calculation of concentrations assuming uniform concentrations in any product whose mass does not exceed 10 grams.


			M a	ximum Pern	nitted Concer	ntration (ug/g	g)	
Component	Daily Intake (milligrams)	Pb	As	Cd	Hg	Pd	v	Ni
Drug Substance	200	0.5	1.5	0.5	5	10	10	200
MCC	1100	0.5	1.5	0.5	5	10	10	200
Lactose	450	0.5	1.5	0.5	5	10	10	200
Ca Phosphate	350	0.5	1.5	0.5	5	10	10	200
Crospovidone	265	0.5	1.5	0.5	5	10	10	200
Mg stearate	35	0.5	1.5	0.5	5	10	10	200
HPMC	60	0.5	1.5	0.5	5	10	10	200
Titanium Dioxide	25	0.5	1.5	0.5	5	10	10	200
Iron Oxide	15	0.5	1.5	0.5	5	10	10	200
M aximum Daily	2500 mg	1.25	3.75	1.25	12.5	25	25	500
Intake (ug)	2500 mg	1.25	3.75	1.25	12.5	25	25	500
PDE (ug/day)	PDE (ug/day)	5	15	5	50	100	100	2000

Control Strategy: All levels <30% of PDE, not routine testing necessary

Control of El linked to the Lifecycle concept

Risk Evaluation for metal impurity contamination - Change

- Feed back from manufactures
 - Supplier agreements
 - Equipment equivalency; Equipment that from a "process equivalency" perspective are determined as interchangeable. Are they also interchangeable from ICH Q3 D
- Changes Manufacturing Process
- Site Changes

Up to date experience with Filings in Canada

- ANDS
 - approvals- no additional questions re: EI
 - Deficiency responses (filings before June 2016)- currently under review
- Some supplemental filings under review
- So far no comments, observations or deficiencies received

RD to Commercial

Once all process path evaluations are complete, it will be incorporated in the risk assessment at the submission time Currently, is incorporated in the scale up/process validation

Some items that require further clarification / attention

- USP Monograph or ICH Q3D? (Calcium Carbonate As, 3ppm, 20g/day, PDE 15ug, USP 60ug)
- Class 2B- catalysts tend to be on the CofA and tested routinely for years now
 - Acceptance criteria at times a fraction of the PDE (below CT)
 - Historical data available on several, at times hundreds of batches
 - According to ICH Q3D these should not be routinely monitored
 - Is there a simplified regulatory pathway to accomplish this?
- Dialog with API and Excipient vendors
 - Supply agreements, Supplier driven changes:
 - Clarity regarding changes that can affect the EI
 - Risk Assessment documentation- to be available for audit

Acknowledgements

- Natalie Kurylo
- Jordan Collins
- Ian Buxton
- Claire Mackenzie
- Wan Jiang
- Michal Drzazga

Thank you for your attention

