

Physicochemical Characterization of Nanomedicines

Jeffrey D. Clogston, Ph.D. Principal Scientist, PCC Section Head Nanotechnology Characterization Laboratory <u>clogstonj@mail.nih.gov</u>

April 9, 2019

Nanotechnology Characterization Lab (NCL)

NCL was established in 2004 as a collaboration among the NCI, NIST and FDA, with 4 primary objectives:

Characterize nanoparticles using standardized methods

Conduct structure activity relationship (SAR) studies

Facilitate regulatory review of nanotech constructs

Engage in educational and knowledge sharing efforts

NCL has 10+ years of knowledge and expertise in nanoparticle characterization, and utilizes this to help accelerate the translation of promising nanotech drugs and diagnostics.

NCL Assay Cascade – 50+ Standardized Protocols for Nanotech

Physicochemical Characterization

Size/Size Distribution

- Dynamic Light Scattering (DLS)
- Electron Microscopy (TEM, SEM, cryo)
- Atomic Force Microscopy (AFM)
- Field Flow Fractionation (FFF), SEC-MALLS

Composition

- TEM with EDS
- Inductively coupled plasma-mass spec. (ICP-MS)
- Spectroscopy (NMR, CD, Fluorescence, IR, UV-vis)

Purity

- Chromatography
- Capillary Electrophoresis

Surface Chemistry

- Biacore
- Zeta Potential

Stability

• Stability can be measured with any number of instruments with respect to time, temperature, pH, etc.

Sterility

- Bacterial/Viral/Mycoplasma
- Endotoxin

Cell Uptake/Distribution

- Cell Binding/Internalization
- Targeting

Hematology

- Hemolysis
- Platelet Aggregation
- Coagulation
- Complement Activation
- Plasma Protein Binding

Immune Cell Function

- Cytokine Induction
- Chemotaxis
- · Phagocytosis
- Leukocyte Proliferation
- Leukocyte Procoagulant Activity

Toxicity

- Cytotoxicity
- Autophagy

Pharmacology

- Clinical Tx cycle
- NP Quantitation methods
- PK Parameters

Immunotoxicity

- Local lymph node proliferation assay
- T-cell dependent antibody response
- Adjuvanticity
- Rabbit pyrogen test

Single and Repeat Dose Toxicity

- Blood Chemistry
- Hematology
- Histopathology (42 tissues)
- · Gross Pathology
- Immunogenicity

Efficacy

- Therapeutic
- Imaging

NCL testing links physicochemical properties to biological outcomes.

NCL Supports:

- Preclinical Characterization
- **Regulatory Concerns**
- Clinical Characterization
- **Exploring Alternate Indications**
- Next-Generation Nanoparticles

14 Collaborators in clinical trials with novel nanomedicine therapies.

Physicochemical Characterization

Physicochemical characterization boils down to analytical instrumentation and development of new methods

- Dynamic Light Scattering (DLS)
- Static Light Scattering (MALS)
- Laser Diffraction
- Electron Microscopy (TEM, SEM, cryo-TEM, EDS)
- Atomic Force Microscopy (AFM)
- Resistive Pulse Sensing (RPS)
- Zeta Potential
- Chromatography (RP-HPLC, SEC, AF4, FPLC)
- Liquid chromatography–mass spectrometry (LC-MS)
- Inductively coupled plasma-mass spectrometry (ICP-MS)
- CHNOS Elemental Analysis
- Spectroscopy (UV-Vis, Fluorescence, IR, Raman)
- Thermal Analysis (TGA, DSC)
- Quartz Crystal Microbalance with Dissipation monitoring (QCM-D)

Leveraging over 13 years of experience, NCL has identified the key PCC parameters and methodology needed

- Liposomal Products
- Polymeric Nanoparticles
- Colloidal Metal Nanoparticles

Methotrexate (MTX)

Liposome Drug Products

Development of new methods to address FDA questions

Liposome Drug Products

Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation

Guidance for Industry

CMC Section

Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 2093-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: druginf0@fda.hhs.gov tp://www.fda.gov/Drugs/Guidances/default.htm

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> > April 2018 Pharmaceutical Quality/CMC

	INTRODUCTION	
Ι.	BACKGROUND	
I.	DISCUSSION	
Α.	Chemistry, Manufacturing, and Controls	
1	Description and Composition	
2	Physicochemical Properties	
3	Critical Quality Attributes	
- 4	Description of Manufacturing Process and Process Controls .	
5	Control of Lipid Components	
6	Drug Product Specification	
7	Stability	
8	Postapproval Changes in Manufacturing	
В.	Human Pharmacokinetics: Bioavailability and Bioequival	ence
,	Clinical Pharmacology Studies	
2	Biopharmaceutics	
C.	Labeling	
v.	REFERENCES	
	I. A. 1 2 3 4 5 6 7 8 B. 1 2 C. V.	INTRODUCTION BACKGROUND I. DISCUSSION A. Chemistry, Manufacturing, and Controls Description and Composition Physicochemical Properties. Critical Quality Attributes Description of Manufacturing Process and Process Controls Control of Lipid Components. Control of Lipid Components. Drug Product Specification Stability. Postapproval Changes in Manufacturing B. Human Pharmacokinetics: Bioavailability and Bioequival Clinical Pharmacology Studies. Biopharmaceutics C. Labeling W. REFERENCES

Liposomal Products Parameters, Methods, and Considerations

Polymeric Nanoparticles Parameters, Methods, and Considerations

Colloidal Metal Nanoparticles Parameters, Methods, and Considerations

Sizing by Different Techniques

Time, min

- Contains >5 µm particles
- Free protein present
- Polydispersed size population
- Lipid aggregates present

Orthogonal methods highly recommended!

Cryo-TEM PEGylated Liposomal Doxorubicin

Stock solution (2.5 μL) was applied to a cryo-TEM carbon film grid (Electron Microscopy Sciences). The grid was flash-frozen in ethane using a Vitribot apparatus. Images were taken using a Titan Krios (FEI) equipped with a high-brightness X-FEG gun at 120 V acceleration voltage. Particle size analysis was performed using ImageJ (https://imagej.nih.gov/ij/).

Particle Size and Concentration

Spectradyne nCS1 (Resistive Pulse Sensing)

Running Buffer: Samples diluted 100-fold in running buffer (PBS + 1% Tween)

Diameter (nm)

Average size: 78.0 nm Approximate range: 45-125 nm

Integrated concentration: 1.15E11 particles/mL Sample concentration: 1.15E13 particles/mL

Average size: 69.7 nm Approximate range: 40-110 nm

Integrated concentration: 2.24E11 particles/mL Sample concentration: 2.24E13 particles/mL

Average size: 74.1 nm Approximate range: 50-100 nm

Integrated concentration: 7.55E10 particles/mL Sample concentration: 7.55E12 particles/mL

NCI Alliance for Nanotechnology Characterization Laboratory

Diffuse layer

Lipid Composition Characterization

Lipid composition to assess batch-to-batch consistency.

Formulation contains 6 different lipids

- Quantitate all six lipids
- Unique elution profile to separate lipids
- No unique spectral properties for detection
- Minimize number of HPLC runs

Lipid Nanoparticles with siRNA

Reversed-phase High performance liquid chromatography (RP-HPLC)

Assessing Protein Binding

Ion Quantitation in Liposomal Products

- New method developed to measure total [NH₄⁺] and [SO₄²⁻].
- Using microcon centrifugal filters, external [NH₄+] and [SO₄²⁻] can be measured.
 - Mass balances allow for internal [NH₄+] and [SO₄²⁻].
- Supports the FDA regulatory guidance for doxorubicin hydrochloride liposomal injection products.
 - Method can be used to compare batch-to-batch consistency and Doxil-analogs.
- Method can also be used for other counterions (Ca²⁺, CH₃COO⁻, MeSO₃⁻) as well as buffer ingredients (sucrose, histidine, Na⁺, Cl⁻).

Wu J, Crist RM, McNeil SE, Clogston JD. Ion quantification in liposomal drug products using high performance liquid chromatography. J Pharm Biomed Anal. 2019, 165, 41-46.

Impurities and Stability Assessment of Liposomal Products

HSPC : Cholesterol : mPEG-DSPE

55:40:5

Doxil

Doxorubicin

Liposome

glycol (MPEG)

Methoxypolyethylene

Components

HSPC = DSPC (major component) + PSPC/SPPC DSPE-mPEG Cholesterol

Hydrolysis Products

DSPC → SA + C18 LysoPC (1-LPC, 2-LPC) DSPE-mPEG → SA + C18 LysoPC-mPEG (1-LPC-mPEG, 2-LPC-mPEG) PSPC/SPPC → SA + C16 LysoPC (1-LPC, 2-LPC) PSPC/SPPC → PA + C18 LysoPC (1-LPC, 2-LPC)

> SA = stearic acid PA = palmitic acid

RP-HPLC method developed to monitor degradation products in liposomes.

Method can also be used to assess stability/shelf-life.

^{*} Normalized to theoretical total lipid concentration, 15.96 mg/mL ([HSPC] = 9.58 mg/mL, [Chol] = 3.19 mg/mL, [DSPE-mPEG] = 3.19 mg/mL)

- Drug loading is one of the most important critical quality attributes (CQAs) of prodrugs.
- Quantification of chemically conjugated drugs in polymeric prodrugs is difficult.
 - Development of novel orthogonal method

- Determine the elemental composition by combusting the sample under certain conditions
- Only elements of carbon (C), hydrogen (H), nitrogen (N), and sulfur (S) as combustion of materials are used to convert to their oxidized form (CO₂, H₂O, NO or NO₂, and SO₂) under high temperature high oxygen conditions

Drug Loading Quantification of Prodrugs

HN CO OH	NH2 O N O S O H	PH HH C HN C NN C NN C NN C NN C NN C NN	Sample Poly L-lysine succinylated Lamivudine PLS-LAM	<u>%S</u> 0.46 14.17 1.37	<u>%N</u> 12.17 18.44 12.58
Poly L-lysine succinylated (PLS)	Lamivudine (LAM)	PLS-LAM	$\%WT_{LAM} = \frac{\%S_{\text{prodrug}} - \%S_{\text{PLS}}}{\%S_{LAM} - \%S_{\text{PLS}}} \times 100\%$ $\%WT_{LAM} = 6.6 \pm 0.4\%$	%WT _{LAM} = % W7	$\frac{\%N_{\text{prodrug}} - \%N_{\text{PLS}}}{\%N_{\text{LAM}} - \%N_{\text{PLS}}} \times 100\%$ $T_{LAM} = 7.0 \pm 0.9\%$

Orthogonal methods comparison

Prodrug	CHN <mark>S</mark> elemental analysis	CH <mark>N</mark> elemental analysis	Hydrolysis & RP-HPLC	SEC-MALS
PLS-LAM	$6.6 \pm 0.4\%$	7.0 ± 0.9%	6.7 ± 0.1% 7.4 ± 0.1%	5.7 ± 3.8%

Advantages

- Robust: no method development required
- ✓ Fast: approximately 5 min/sample in CHN mode; 7 min/sample in CHNS mode
- ✓ ~2 mg sample (powder) needed
- Accurate: sample-to-sample consistency, validated by other methods

New method to quantitate polymer-bound drug

Drug Release of Prodrugs in Human Plasma

Prodrug loaded micelles

- Does it cleave? How fast does it cleave?
- Cleavage site?
- Stability of drug?

HPLC Void peak mAU 100 2500 Prodrug Increasing time 90 80 2000 70 60 Hydrolyzed 1500 Prodrug (intact) 50 40 1000 30 20 500 % 10 0 20 40 60 80 100 0 t = 0 Time, h 10 12 14 mi

Lipid Anchor

Linker

LC/MS

• HPLC to separate components of formulation and plasma

Drug

 LC/MS to determine cleavage site and drug stability

HPLC = high performance liquid chromatography; LC/MS = liquid chromatography-mass spectrometry

Drug Stability of Polymeric NPs by AF4-DLS-HPLC

Protein and Lipid Coating Quantification

Dissolution Method

Bound protein and lipids concentration on colloidal gold nanoparticles can now be determined .

Batch-to-Batch Consistency by Tunable Resistive Pulse Sensing (TRPS)

http://www.izon.com/products/capabilities/particle-sizing/

Addition of charge distribution capability...

	Diameter, nm	Particle Count	Zeta Potential, mV
Lot 1	220	180	-13.4
Lot 2	210	362	-18.4
Lot 3	209	344	-20.5

Examine size and charge on a per particle basis. Assess batch-to-batch consistency.

Batch-to-Batch Consistency by AF4-MALS

PEGylated metal oxide nanoparticles

TEM initially performed to assess batch-to-batch consistency.

Lot	n	Average Diameter (nm)
1	661	20 ± 17
2	465	22 ± 16
3	690	23 ± 17

No difference in size by TEM

AF4-MALS

Flow-mode detects differences batch-mode cannot.

AF4-MALS better suited in terms of throughput and ease for assessing batch-to-batch consistency in this case. Whole

Blood

- Blood partitioning assay
- Zolnik et al., Drug Metab Dispos. 2008, 36(8):1709-15.

Centrifuge

Plasma

- Dual labeling/complementary analysis in vivo
- Extraction methods to separate free and encapsulated
- Metabolite modeling to predict free drug

Incubate

Stern ST et al., J Control Release, 2013, 172(2), 558-567.

 Measurement of fraction unbound to quantify drug encapsulated/released

Stern et al. J Control Release. 2015, 220(PtA), 169-174

Novel Stable Isotope Tracer Method to Measure Nanomedicine Drug Fractions

Stable Isotope Tracer Ultrafiltration Assay (SITUA) can assess nanomedicine drug fractions in human plasma.

- Stable isotopically labeled drug (D*) equilibrates with protein and unlabeled, normoisotopic drug (D) released from nanomedicine (NM) formulation.
- % D* bound estimation gives reliable prediction of %D bound.

%Bound = ([Total D*] - [Ultrafilterable D*]) * 100
[Total D*]
[Unencapsulated D] = [Ultrafilterable D]
(1-(%Bound D*/100))
[Encapsulated D] = [Total D] - [Released D]
For more information:

ncl.cancer.gov/working-ncl/technical-services Contact us: ncl@mail.nih.gov

Skoczen SL, McNeil SE, Stern ST J Control Release. 2015; 220 (Pt A): 169-174. Skoczen SL, Stern ST. Methods Mol Biol 2018; 1682: 223-239.

NCL Team

Director

Scott E. McNeil. Ph.D.

Stephan T.

Stern, Ph.D.,

DABT

David Sarah Stevens, Ph.D. Skoczen, M.S.

Timothy M. Potter, B.S.

Physicochemical Characterization

Yingwen

Hu, Ph.D.

Jeffrey D. Clogston, Ph.D.

Alison Vermilya, M.S.

Marina A.

Dobrovolskaia,

Ph.D., M.B.A., PMP

Kelsie

Snapp, B.S.,

M.B.A.

Barry W.

Neun, B.S.

Ed Cedrone, B.S.

Alliance Management/Support/Admin.

Rachael M. Crist. Ph.D.

Christianna Culpepper, B.S., M.B.A.

Supporting Labs

- Laboratory Animal • **Sciences**
- Pathology/Histology ٠
- Electron Microscopy ٠

Contact Info: Jeffrey D. Clogston (301) 846-1388 clogstonj@mail.nih.gov http://ncl.cancer.gov