Considerations for Biologics and Non-Biological Complex Drugs

Daan J.A. Crommelin

Professor Emeritus, Utrecht University, The Netherlands/EU

SESSION 1: COMPLEX GENERICS - CHALLENGES AND OPPORTUNITIES Moderator: Wenlei Jiang, FDA

Gottlieb: Changes To Hatch-Waxman May Boost Complex Generic Market

April 04, 2019

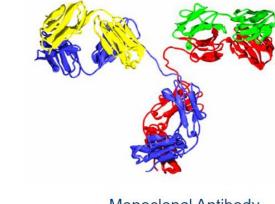
Outgoing FDA chief Scott Gottlieb pinpointed complex generic and second-to-market novel drug development as two key areas in which he thinks the agency could have an effect in the drug pricing arena. During a House Appropriations subcommittee nearing on weanesday (April 3), he told lawmakers they could contemplate changes to Hatch-Waxman that would allow the agency to look at small complements of clinical data when approving generics of complex drugs, and he highlighted that a lack of financial incentives are holding companies back from developing second-to-market novel drugs.

InsideHealthPolicy, 4 April 2004

Considerations for Biologics and Non-biological Complex Drugs (NBCDs)

- Introduction: Complex drugs...... A multifaceted landscape
- A glance at the regulatory framework for biosimilars
- CQA assessment, comparability, evolution, drift and divergence
- Formulation: freedom to operate, does it make a/the difference?
- Market penetration in the EU, consequences
- Non-Biological Complex Drugs (NBCD): similarity with biosimilars.... Published dissimilarity observed outside the USA. Present regulatory schemes. How to proceed?
- Conclusions

The complex drug –many nanomedicines- landscape (an impressionist view)



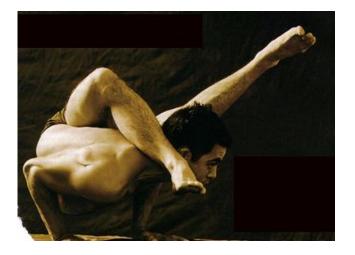
Small molecules versus proteins: size difference

Proteins are Big!

Proteins are 'vulnerable'

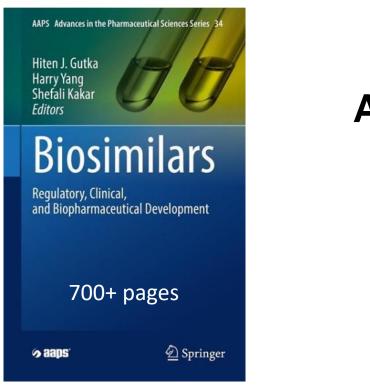
Aspirin

Interferon


Mw around 150 around 20,000

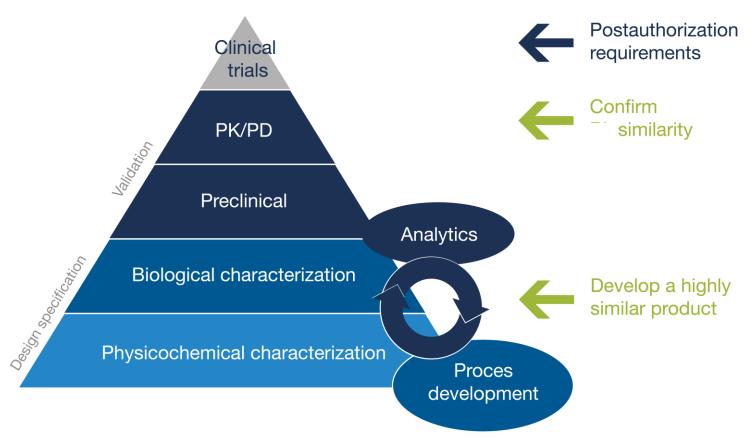
Monoclonal Antibody

around 150,000


How do **Biologics** compare to small, low molecular weight drugs?

	SMALL MOLECULE DRUGS	BIOLOGICS
Molecular weight	Low (<500)	High (range 5-900 kDa)
Structure	Simple, well-defined	Complex, heterogeneous, defined by manufacturing process
Modifications	Well-defined	Many options
Manufacturing	Chemical synthesis	Produced in living cells or organisms
Stability	Stable	Generally unstable, sensitive to external conditions
Immunogenicity	Mostly non-immunogenic	Mostly immunogenic
Copy characteristics	Identical copies can be made	Impossible to ensure identical copy versions

Adapted from GaBI Online – Generics and Biosimilars Initiative www.gabionline.net/Biosimilars/Research/Small-moleculeversus-biological-drugs, based on Declerck and Schellekens.



5

Proving "highly similar" to reference product often requires multiple iterations to optimize process as assessed by physicochemical characterization

Complex Drug Development Process? A stepwise approach – totality of evidence

Adapted from McCamish and Woollet; MAbs. 2011 Mar-Apr;3(2):209-17.

Considerations for Biologics and Non-biological Complex Drugs (NBCDs)

- Introduction: Complex drugs...... A multifaceted landscape
- A glance at the regulatory framework for biosimilars
- CQA assessment, comparability, evolution, drift and divergence
- Formulation: freedom to operate, does it make a/the difference?
- Market penetration in the EU, consequences
- Non-Biological Complex Drugs (NBCD): similarity with biosimilars.... Published dissimilarity observed outside the USA. Present regulatory schemes. How to proceed?
- Conclusions

Similarity......Critical Quality Attributes (CQA): what counts?

A-Mab: a Case Study in Bioprocess Development

CMC Biotech Working Group

Quality by Design for Biopharmaceutical Drug Product DROOHOppragets

🐼 aapspress 🖉 Springer

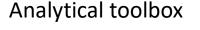
Experience with a group of complex drugs: CQA analysis of MABs 278 pages

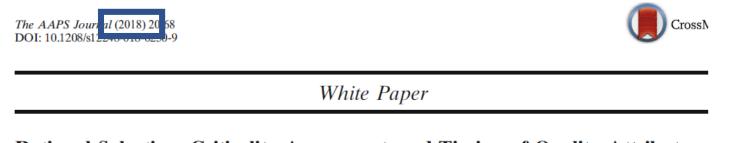
Table 2.2 Typical Quality Attributes for a Monoclonal Antibody

Product V	ariants	Purity (including Process-related impurities)		
Aggregation Conformation C-Terminal Lysine Deamidated Isoforms Disulfide Bonds	Fragmentation Glycation Glycosylation Oxidation Thioether link	Microbiological Purity Viral Purity DNA HCP (Host Cell Protein) Protein A	Selective agent Cell Culture Medium Components Purification Buffer Components	
	Drug	Product Attributes		
Foreign Particles Clarity Color Osmolality		pH Product Concentration Potency Volume		

Product Development and Realisation Case Study A-Mab

A-Mab: a Case Study in Bioprocess Development

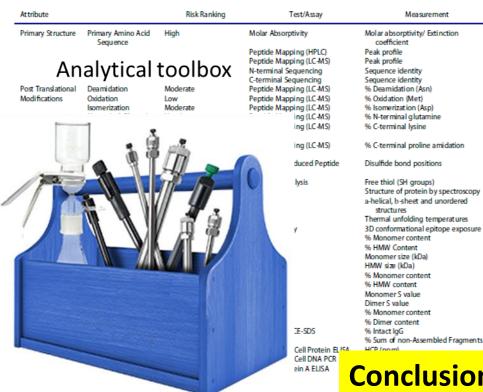

	•	1								
CMC Biotech Working Group		Attribute	Prior Knowledge		In-vitro Studies	Non-clinical Studies	Clinical Experience	Claimed Acceptabl e Range	Rationale for Claimed Acceptable Range	
		MedImmune	Afacosylation	acosylation 1-11%; Clinical experience with X-Mab and Y-Mab; both X-Mab and Y-Mab have ADCC as part of MOA		A-Mab with 2-13% afucosylation tested in ADCC assay; linear correlation; 70-130%	Animal model available; modeled material (15%) shows no significant difference from 5%	5-10%; Phase II and Phase III	2-13%	2-13% afucosylation correlates with 70-130% ADCC activity. Lower end covered by prior knowledge; upper end covered by modeled material in animal model.
	ABBOTT	GlaxoSmithKline	Aggregation	1-5% aggregate SL) in clinical commercial pro X-Mab; minimal	studies and duction with	Purified A-Mab dimer has similar biological	Animal models typically not relevant	1-3% aggregate	0-5%	5% upper range claimed based on prior clinical experience with X-Mab.
	AttributePrior KnowledgeAftribute1-11%; Clinical experience with X-Mab and Y-Mab; both X-Mab and Y-Mab have ADCC as part of MOA		In-vitro	vitro Studies		-clinical Clinical A		Claimed Acceptabl e Range	Rationale for Claimed Acceptable Range	
			A-Mab with 2-13% afucosylation tested in ADCC assay; linear correlation; 70-130%		Animal model available; modeled material (15%) shows no significant difference from 5%		5-10%; Phase II and Phase III	2-13%	2-13% afucosylation correlates with 70-130% ADCC activity. Lower end covered by prior knowledge; upper end covered by modeled material in animal model.	
-			HCP	Phase I trial (cor 120 ng/mg H	responds to CP level)	NA	NA	5-20 ng/mg	0-100 ng/mg	on prior clinical experience with X- Mab.
•	• Design Space defined!		Sialic Acid	Literature data show sialylated forms can impact PK and ADCC		Level of 0-2% on A- Mab shows no statistical correlation to ADCC	NA	0-0.2%; Phase II and II	0-2%	In vitro studies with A-Mab.
		High Mannose	Literature data show afucosylated forms impact ADCC		NA	NA	3-10%;	3-10%	Clinical Experience with A-Mab.	
			Non- Glycosylated Heavy Chain	Literature data show that non-glycosylated forms impact ADCC		NA	NA	0-3%	0-3%	Clinical Experience with A-Mab.
			SAE = contains a drawed count SI = chalf life							


Table 2.29 Basis for Acceptable Ranges for the Quality Attributes Discussed in the Case Study

SAE = serious adverse event; SL = shelf life

Models to assess 'criticality'.....

From the A mab case Assessment of *criticality* Ranking..... A tool from the toolbox: *impact x uncertainty* (tool 1, A mab study)


Rational Selection, Criticality Assessment, and Tiering of Quality Attributes and Test Methods for Analytical Similarity Evaluation of Biosimilars

Kristof Vandekerckhove,¹ Andreas Seidl,² Hiten Gutka,³ Manish Kumar,⁴ Gyöngyi Gratzl,⁵ David Keire,⁶ Todd Coffey,⁷ and Henriette Kuehne^{8,9}

Quality attributes and test methods used for physicochemical and biological similarity assessment between Herceptin and a biosimilar

Table 2. Quality Attributes and Test Methods used for Physicochemical and Biological Similarity Assessment between CT-P6 and Herceptin®.

Charge Variants	Charge Variants	Moderate (Deamidated/ Isomerization)	IEF	
		Very Low (All others)	IEC-HPLC	% Peak 1-
				% Peak 6
				% Peak 5
				% Peak 7
Glycosylation	Non-glycosylated Product	Moderate	Reduced CE-SDS	% Non-gly L+H
	Afucosylated Glycans	Moderate	Oligosaccharide Profiling	%G0+G1-
			N-linked Glycan Analysis	%G0+G1-
	High Mannose Glycans	Moderate	Oligosaccharide Profiling	%Man5+/
			N-linked Glycan Analysis	96Man5

2	Attribute		Risk Ranking	Test/Assay	Measurement	Tier of Statistical Analysis
31 31 31		Sialic Acids	Low	Oligosaccharide Profiling	%[G1F-GN+NANA]+[G1F+NANA]+ [G2F+NANA]+[G2F+2NANA]	3
31				Sialic Acid Analysis	NANA (sialic acid / protein, mol / mol)	3
2		Glycation	Low	Glycation analysis	% Glycation at light chain % Glycation at heavy chain	3
2	Fab Binding	HER2 Binding	Very High	HER2 Binding Affinity (ELISA)	Relative HER2 Binding (%)	2 ³
3				Cell-based HER2 Binding Affinity (CELISA)		2 ³
3		Anti-proliferation	Very high	In Vitro Bioactivity (anti- proliferation) using BT-474 Cell	Relative Anti-proliferation (%)	1
	Fc Binding	C1g Binding	Low	C1g Binding (ELISA)	Relative C1g Binding (%)	3
3	-	FcyRIIIa Binding	High	FcyRIIIa V Type Binding Affinity (SPR)	Relative FcyRIIIa V Type Binding Affinity (%)	2
2 3 ¹				Fcy/RIIIa F Type Binding Affinity (SPR)	Relative Fcy/RIIIa F Type Binding Affinity (%)	2
31		FcyRIIb Binding	Moderate	Fcy/RIII b Binding Affinity (SPR)	Relative Fcy/RIIIb Binding Affinity (%)	2
2		FcyRIIa Binding	High	FcyRlla Binding Affinity (SPR)	Relative Fcy Rlla Binding Affinity (%)	2
31		Fcy/RIIb Binding	Moderate	FcyRllb Binding Affinity (SPR)	Relative Fcy RIIb Binding Affinity (%)	2
3		Fcy/RI Binding	Low	Fcy/RI Binding Affinity (SPR)	Relative Fcy/RI Binding Affinity (%)	3
2		FcRn Binding	Moderate	FcRn Binding Affinity (SPR)	Relative FcRn Binding Affinity (%)	2
2 3 ²	Fab –Fc Mediated Activities	ADCC	Very High	ADCC (PBMC)	Relative ADCC Potency (%)	1

¹Tier 3 was assigned because nature of the assays is qualitative despite of "high" or "moderate" risk ranking.

²Tier 3 was assigned due to the trace amount of HMW content to precisely evaluate the molecular weight by MALS.

³Tier 2 was assigned considering HER2 binding affinity does not measure the MoAs (anti-proliferation or ADCC activities) directly relevant to the clinical efficacy of trastuzumab.

Conclusion: assessment of similarity of a mab is using a large toolbox with orthogonal and complementary –looking at different aspectstest methods

 Peak 1+Peak 2+Peak 3+Peak 4
 2

 Peak 6
 2

 Peak 5
 3

 Peak 7
 2

 Non-glycosylated Heavy Chain %
 2

 L+H
 50+G1+G2
 2

 30+G1+G2
 2
 2

 Jan5+Man6+Man8
 2
 2

Jihun Lee 💿, Hyun Ah Kang, Jin Soo Bae 💿, Kyu Dae Kim, Kyoung Hoon Lee, Ki Jung Lim, Min Joo Choo, and Shin Jae Chang

Biotechnology Research Institute, R&D Division, Celltrion Inc., Incheon, Korea

REPORT

Evaluation of analytical similarity between trastuzumab biosimilar CT-P6 and reference product using statistical analyses

Jihun Lee, Hyun Ah Kang, Jin Soo Bae, Kyu Dae Kim, Kyoung Hoon Lee, Ki Jung Lim, Min Joo Choo and Shin Jae Chang

Biotechnology Research Institute, R&D Division, Celltrion Inc., Incheon, Korea

Table 1. Risk rankin	ig determir	nation and tier cla	2.2018.1440170					
Potential Clinical I	mpact	Degree of Unce	rtainty	Risk Ranking	Tier			
				Very High	1	Quality Attrib	oute / Test Method	
Very High, High, Medium,	×	High, Medium,	=	High Moderate	2	Tier 1 F(ab') related Activities ³	Anti-proliferation	
Low, Very Low		Low		Low Very Low	3	Fab-Fc Mediated Activities ³	ADCC (%)	

MABS

2018, VOL. 10, NO. 4, 547-571

https://doi.org/10.1080/1942086

Lee et al., 2018

MABS 2018, VOL. 10, NO. 4, 547–571 https://doi.org/10.1080/19420862.2 018.1440170

Comparison of charge variants (acidic and basic) of trastuzumab originator and biosimilar products

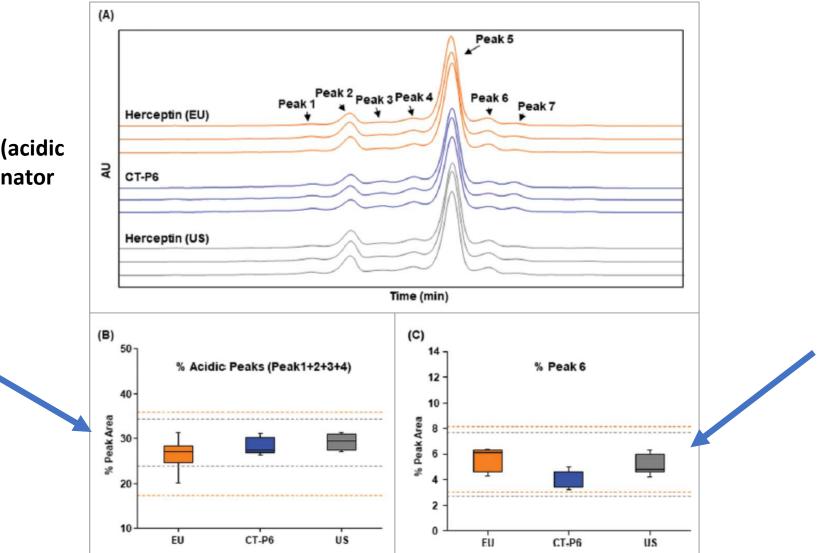
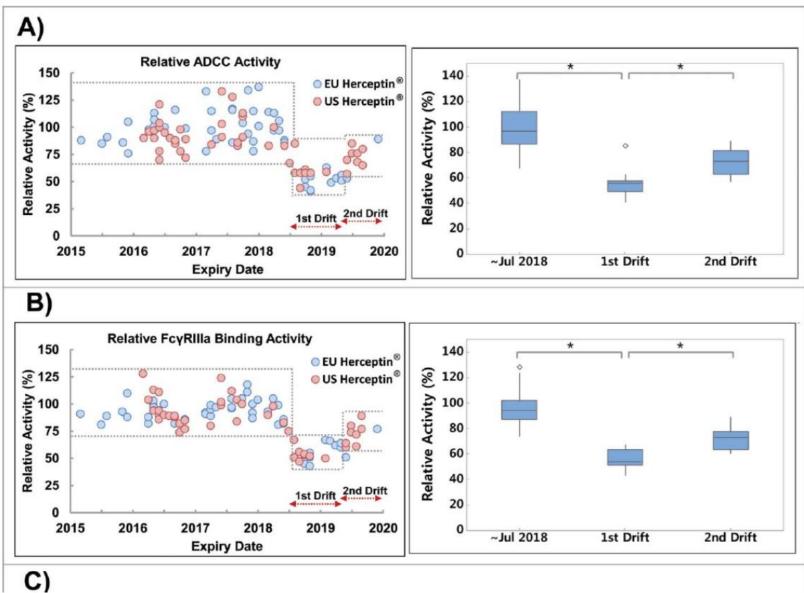



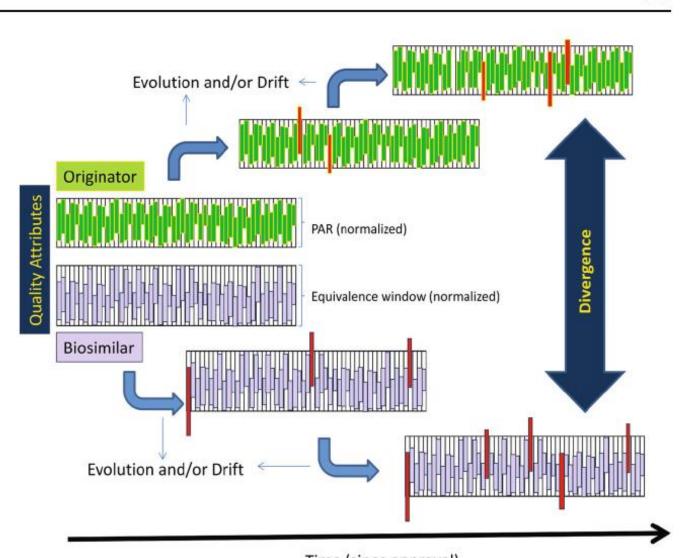
Figure 6. Comparison of charge variants of CT-P6 (blue), EU-Herceptin[®] (orange) and US-Herceptin[®] (grey) analyzed by IEC-HPLC. (A) Representative ion exchange chromatograms are presented for 3 batches of each product. The number and distribution of IEC-HPLC peaks are conserved between CT-P6 and RMPs. (B) Box plots of acidic peaks % (Peak 1 + Peak 2 + Peak 3 + Peak 4) in IEC-HPLC, (C) Box plot of Peak 6 % in IEC-HPLC. Orange and grey broken lines represent quality range of EU-Herceptin[®] and US-Herceptin[®], respectively. Box plot shows the interquartile range (box), median (band inside of box), maximum and minimum values (whiskers).

The innovator product drifts, from Lee et al., 2018

REVIEW ARTICLE

Evolution and/or Drifting

369


Drift, Evolution, and Divergence in Biologics and Biosimilars Manufacturing

Sundar Ramanan · Gustavo Grampp

Drift, Evolution, and Divergence in Biologics

Fig. 6 Post-licensure evolution and/or drift can lead to product divergence. *PAR* proven acceptable range

Herceptin[®], trastuzumab EMA: Procedural steps taken and scientific information after the authorisation: 145

Considerations for Biologics and Non-biological Complex Drugs (NBCDs)

- Introduction: Complex drugs...... A multifaceted landscape
- A glance at the regulatory framework for biosimilars
- CQA assessment, comparability, evolution, drift and divergence
- Formulation: freedom to operate, does it make a/the difference?
- Market penetration in the EU, consequences
- Non-Biological Complex Drugs (NBCD): similarity with biosimilars..... Published dissimilarity observed outside the USA. Present regulatory schemes. How to proceed.
- Conclusions

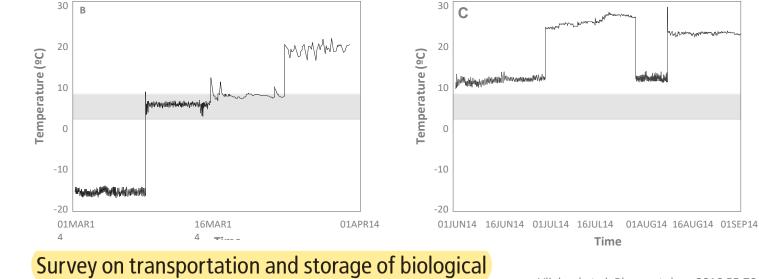
Basic information source: formulation differences

Biosimilars in the EU

Information guide for healthcare professionals

Prepared jointly by the European Medicines Agency and the European Commission

'Some differences may be allowed if they have no effect on safety and efficacy - for example differences in the formulation of the medicine (e.g. excipients), presentation (e.g. powder to be reconstituted versus solution ready for injection)'.


	Humira® ('new')	Humira® ('classic')	Imraldi®	Amgevita™	Cyltezo®	Hyrimoz®	Hulio®
Citrate	N	Y	Υ	N	Ν	Y	N
Needle gauge	AI: 29 PFS: 29	AI: 27 PFS: 27	PFS: 29 AI: 29	PFS: 29 Al: 27	PFS: 27 AI: 27	PFS: 27 Al: 27	AI:20 PFS:29
Latex*	Ν	Υ	Ν	Y	Y	Y	Ν
рН	5.2 ⁺	5.2	5.2	5.2	5.2	5.2	5.2
Volume (mL)	0.4	0.8	0.8	0.8	0.8	0.8	0.8
Complete formulation	Mannitol, Polysorbate 80, WFI	Disodium phosp Ste % dihydrate,	Sorbitol, Polysorbate 20, Sodium citrate, Citric acid monohydrate, Histidine, Histidine hydrochloride monohydrate, erlamds price dro	op of Hur	nira,	WFI	Sorbitol, Polysorbate 80, Monosodium glutamate, Methionine, Hydrochloric acio (pH) WFI
Approved shelf life	2 years	2 years	3 years	2 years	2 years	2 years	2 years
Room temp stability	maximum of 25°C for a period of up to 14 days (except vial)	maximum of 25°C for a period of up to 14 days	maximum of 25°C for a period of up to 14 days* (28 days published)	maximum of 25°C for a period of up to 14 days	maximum of 25°C for a period of up to 14 days	maximum of 25°C for a period of up to 14 days	maximum of 25°C for a period of up to 14 days

Product stability is critical: many patients do not store **biologics correctly**

Only 6.7% of the patients stored all bDMARDs packages within the defined SmPC-recommended temperature range

24.3% of patients stored their bDMARD for more than 2 hours consecutive time below 0°C and 2.0% for more than 2 hours above 25 °C Examples of deviation patterns among patients who did not store bDMARDs within the

30 Α 20 Temperature (ºC) 10 -10 -20 01SEP14 16SEP14 010CT14 160CT14 Time

therapies by patients Europ. J. Rheumatology 2019

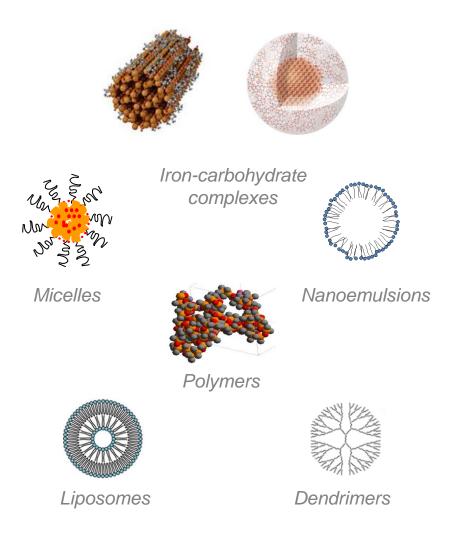
SmPC-recommended temperature range depicted by the horizontal green bars

Arias Saavedra 📴, Carolina Aimo 📴, Jose Astudillo Andrade 回, Damaris Alvarez 回, Gabriel Sequeira 💿, Eduardo Kerzberg 💿

Vlieland et al. Rheumatology 2016;55:704-709

SmPC-recommended temperature range

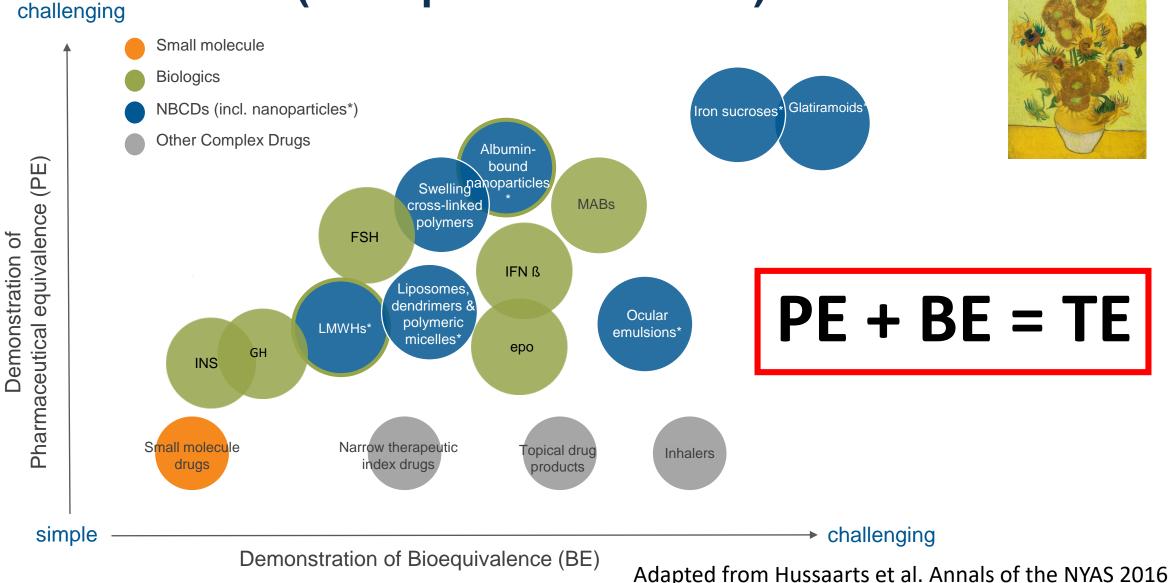
Considerations for Biologics and Non-biological Complex Drugs (NBCDs)


- Introduction
- A glance at the regulatory framework for biosimilars
- CQA assessment, comparability, evolution, drift and divergence
- Formulation: freedom to operate, does it make a/the difference?
- Market penetration in the EU, consequences
- Non-Biological Complex Drugs (NBCD): similarity with biosimilars.... Published dissimilarity observed outside the USA. Present regulatory schemes. How to proceed?
- Conclusions

What is are NBCDs = Non-Biological Complex Drugs

A non-biological complex drug...

- ... is a synthetic medicinal product that is **not a biological medicine**
- ... with an active substance that is not homo-molecular but contains different (closely related, often nano-particulate) structures
- ... that **cannot be fully characterized** by physicochemical analytical means.


A **well-controlled** robust manufacturing process is fundamental to ensure quality, safety and efficacy.

The complex drug –many nanomedicines- landscape (an impressionist view)

What is an NBCD? (1)

NBCDs are used to treat a **variety of serious medical conditions** including cancer, auto-immune diseases, infectious diseases, anemia, and more.

Doxorubicin liposomes

- Cancer
- Originator: Doxil® (Janssen)

Glatiramer acetate

- Multiple sclerosis
- Originator: Copaxone®
 (Teva Pharmaceuticals)

Cyclosporine ophthalmic emulsion

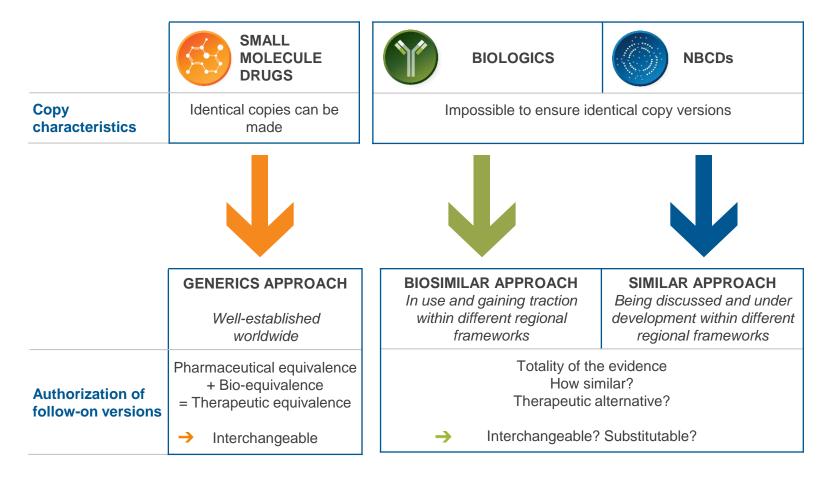
- Chronic dry eye disease
- Originator: Restasis® (Allergan)

Iron sucrose

- Anemia
- Originator: Venofer® (Vifor Pharma)

Sevelamer carbonate

- Control of phosphorus levels (chronic kidney disease)
- Originator: Renvela® (Sanofi)


How do NBCDs compare to other drugs?

	SMALL MOLECULE DRUGS	BIOLOGICS NBC	Ds		
Molecular weight	Low (<500)	High (range 5-900 kDa)			
Structure	Simple, well-defined	Complex, heterogeneous, defined by manufacturing proc			
Modifications	Well-defined	Many options			
Manufacturing	Chemical synthesis	Produced in living cells or Synthetic tech organisms (incl. nand	U U		
Stability	Stable	Generally unstable, sensitive to external cond	itions		
Immunogenicity	Mostly non-immunogenic	Mostly immunogenic Immunogenic	ity varies		
Copy characteristics	Identical copies can be made	Impossible to ensure identical copy versions			

Adapted from GaBI Online – Generics and Biosimilars Initiative <u>www.gabionline.net/Biosimilars/Research/Small-molecule-versus-biological-drugs</u>, based on Declerck and Schellekens.

The similarity approach for biologics and many NBCDs

Based on Schellekens et al; Regul Toxicol Pharmacol. 2011 Feb;59(1):176-83.

7-4-2019

European Journal of Pharmaceutical Sciences Available online 3 April 2019 In Press, Accepted Manuscript (?)

The EU regulatory landscape of non-biological complex drugs (NBCDs) follow-on products: Observations and recommendations

K. Klein ^{a, b, c} A 🖾, P. Stolk ^{a, b, c}, M.L. De Bruin ^{a, d}, H.G.M. Leufkens ^{a, b}, D.J.A. Crommelin ^e, J.S.B. De Vlieger ^b

https://doi: 0.07/10/1014/: 0.05/2010/02/020

Cot rights and contant

```
85 NBCD-generics approved in the EU.
```

2 via the centralized procedure EMA 83 outside the centralized procedure.

Examples of clinical non-equivalence described.

And the US situation?

Next presentations will describe current policies.....

The switch from Iron Sucrose Similar to Venofer[®] reduces i.v. iron and EPO dosing in HD-patients¹

34.3% less i.v. iron dosing with Venofer ®

12.5% less ESA consumption after switching to Venofer[®]

960 mg i.v. iron less per HD-patient/year with Venofer[®] **p<0.001**

=

190.8 μg ESA less per HD-patient/year after switch from ISS to Venofer[®] **p<0.001**

*1 syringe of epoetin-α calculated as weekly dose of 3'000 IE/0.3 ml (25.2 μg/0.3 ml)

- A <u>prospective</u>, observational <u>multi-centric</u> study comparing two subsequent treatment periods of 13 months each, including 342 HD pats.
- Hb levels were stable over two <u>treatment periods of 13 month</u> each
- <u>T_{SAT} went up</u> from 28.6±7.2% to 30.7±7.6% (p<0.001) after switch to Venofer[®]
- <u>Ferritin increased</u> from 507ng/ml to 579 ng/ml (**p<0.001**) after switch to Venofer[®]

Non-Biological Complex Drugs

The Science and the Regulatory Landscape

aapspress

Springer

¹ Agüera ML, PLoS One10(8):e0135967 doi:10.1371/journal.pone.0135967

Complexity leads to different regulatory approaches

Lipodox (Sun Pharma)

FDA (2012): temporarily imported without approval due to shortage of Doxil

DOXOrubicin Sun (Sun Pharma) FDA (2013): approved as a generic for Doxil EMA (2016): rejected as a generic for Cealyx

Copaxone® Teva Pharmaceuticals

Glatopa (Momenta) FDA: approved in 2015 through Generics application based on sameness defined by FDA, without clinical studies

Glatiramer Acetate (Synthon) EMA: Approved in 2016 through hybrid application, including one Phase III study

Considerations for Biologics and Non-biological Complex Drugs (NBCDs)

- Introduction: Complex drugs...... A multifaceted landscape
- A glance at the regulatory framework for biosimilars
- CQA assessment, comparability, evolution, drift and divergence
- Formulation: freedom to operate, does it make a/the difference? Stability and handling
- Market penetration in the EU, consequences
- Non-Biological Complex Drugs (NBCD): similarity with biosimilars..... Published dissimilarity observed outside the USA. Present regulatory schemes. How to proceed.
- Conclusions

The biosimilar concept has gained ground and is affecting the (economy of) the health care system.

The complexity of medicines is increasing at a rapid pace (Nanomedicines and Advanced Therapies Medicinal Products, Combination products) and so are the questions around their quality, handling and affordability.

Are paradigm shifts in the regulatory arena needed?

31

Complex Medicines: Science, Regulation, and Accelerating Development

\bigcirc	
۲	

nyas.org/ComplexMedicines2019

#ComplexMedicines2019

May 13, 2019 8:00 AM – 6:00 PM The New York Academy of Sciences

This symposium will outline the future of complex medicines, including the best scientific approaches for their development and regulation, challenges in the assessment of equivalence, and how to ensure timely access for patients.

Presented By:

