

What do Petroleomics, Jet Fuel and Pharmaceuticals Have in Common?

Visualization and Characterization of Complex Mixtures of Extractables/Leachables and Other Pharmaceutically Relevant Compounds using High Resolution 2-D and 3-D Mass Mapping

> Douglas Kiehl*, Scott Campbell⁺, David Stranz⁺ George Maydwell⁺ and Diane Paskiet[‡]

> > *Eli Lilly and Company, Indianapolis, IN, USA †Sierra Analytics, Inc., Modesto, CA, USA ‡West Pharmaceutical Services, Inc., Exton, PA, USA

A map is a diagrammatic representation or collection of data illustrating relationships, characteristics, distribution, size, number or spatial arrangement of unique features over a given area and according to a chosen scale.

- Maps may contain highly resolved details.
- Maps can be two-dimensional representations of three-dimensional space, or can be three-dimensional.

Some examples. . .

A qualitative map: Paris, 1890

Some examples. . .

1121

Semi-quantitative ...and quantitative maps

Complex Molecular Mixtures. . .

Contain many components across a range of concentrations

- Petroleum products
- Natural organic matter (NOM; humic and fulvic acids)
- Marine and riverine dissolved organic matter (DOM)
- Microbial-derived DOM
- Biological materials (cell lysates, metabolites, etc.)
- Formulated drugs and pharmaceutical materials

Complex Molecular Mixtures. . .

... of pharmaceutical relevance typically include:

- **Extractables** (and leachables)
- Related substances in starting materials, intermediates, API and products
- Process reaction impurities, reagents and their reaction products
- Excipients and drug-excipient interaction products
- Degradation products
- > Surfactants

Samples frequently contain multiple compounds from multiple categories!!!

Complex Molecular Mixtures. . .

- Present unique challenges to the analyst
 - Multiple, diverse components at various concentrations
 - Abundant additives and formulation components can complicate the search for analytes present at low levels
 - Higher MW analytes = many elemental composition possibilities
 - Timing for results delivery lengthens with sample complexity
- Require advanced technologies and innovative tools
 - Deep expertise
 - Advanced instrumentation
 - Data reduction and visualization techniques

Additives and Processing Aids in Plastic and **Rubber Materials**

- Anti-oxidants
- Anti-static agents
- uctural Diversity • UV light protectants
- **Plasticizers** lacksquare
- Polymerization
- Lubricants **sgents**
- Vulcanization accelerators

agents

nd fungicides

Extractables can also include polymer fragments, monomers, and oligomers

Molecular features contributing to compound diversity

Structural diversity

- Degree of unsaturation (rings/double bond equivalents)
- Substituents
- Functional groups

Isomeric diversity

- Structural isomers
- Positional isomers
- Geometric isomers
- Stereoisomers

Compositional diversity

- Heteroatom content and type
- Isotopic contributions

Polymer Supply Chain for Pharmaceutically Relevant Materials

Complex Molecular Mixtures...

How complex is "complex" for pharmaceutically relevant materials?

Chromatographic complexity

Mass spectral complexity

Mass spectral complexity

Mass spectral complexity

Copyright © 2018 Eli Lilly and Company

To Extol the Virtues of Accurate Mass Measurement...

Correlating Structure with Formula

...but many structures are still possible...

A Mass Map is. . .

A mass map is a two-dimensional or three-dimensional graphic representation of mass spectrometry (m/z) data revealing unique features of chemical entities by their relative position, distribution, spatial arrangement and abundance according to a chosen scale.

Visualizing Complex Molecular Mixture Data

Kendrick mass defect diagram

- Rescales IUPAC mass scale (based on 12C mass = 12.000 00 Da) to "Kendrick" mass scale for CH2 (e.g. converts CH2 mass from 14.015 65 to 14.000 00 Da)
- Sorts compounds into homologous series by compound "class" (numbers of O, N, other heteroatom)
- Compound "type" (rings and double bonds)
- Degree of alkylation (number of CH₂ groups)

• The van Krevelen diagram

- Projects elemental composition according to H/C and heteroatom/C atomic ratios
- Compounds are classified according to degree of saturation, alkylation, heteroatom inclusion, dehydration, deamination
- Compositional differences are amplified permitting classification, prediction of composition and origin

Kendrick Mass Defect Diagram

Kendrick Mass Defect Diagram (for CH₂)

Copyright © 2018 Eli Lilly and Company

van Krevelen Diagram

van Krevelen Diagram

Copyright © 2018 Eli Lilly and Company

FT-ICR LC-MS analysis of IPA extracts (5 materials) – mapping extractables

van Krevelen Diagram

LC-MS Analytical Workflow for Extractables Assessment

"Mass superspectrum"

24

24

FT-ICR LC-MS total ion chromatograms (right) and mass spectra (left) of IPA extracts of multi-layer biopharmaceutical bags from different sources

Comparative FT-ICR LC-MS contour maps

Comparative Kendrick mass defect diagrams

Comparative 3D van Krevelen diagrams

Mass Mapping in Practice: Polypropylene Syringe Extractables

FT-ICR LC-MS total ion chromatograms (m/z 80-1500) of combined CH_2CI_2 extracts of polypropylene syringes from two different sources

Mass Mapping in Practice: Polypropylene Syringe Extractables

Comparative FT-ICR LC-MS contour maps

Mass Mapping in Practice: Polypropylene Syringe Extractables

Comparative Kendrick mass defect diagrams

Mass Mapping in Practice: Polypropylene Syringe Extractables

	<u>M</u> ass:	1075.	2030						
M	a <u>x</u> , resu	ults 2	00 🗧		<u>C</u> alcul	ate			
ld	F	ormu	la	RDB	Delta p	pm			
34	C43 H;	76 O6 N	l2 Na	18.5	0.85	58			
35	C31 H8	30 O 13	N4 Na	5.5	-0.86	33			
36	C32 H8	38 O3 N	l4 Na	7.5	0.917				
37	C42 He	38 O 16	N ₂ Na	16.5	-0.921				
38	C35 Ha	33 O6 N	l4 Si15	11.5	-0.939				
39	C53 H	56 O 19	Na Si2	27.5	-0.980				
40	C46 H7	71 Og N	l2 Si10	22.5	-0.998				
Limits Charge: 1									
Limi	ts				ojm				
Limi	tsNit	rogen-f	R <u>u</u> le:	Cł Even ele	narge: 1				
Limi	ts Nit Mas	rogen-f	R <u>u</u> le:	Cł Even eli 1.00	narge: 1 ectron ior	inate Is m			
Limi	ts Nit Mas	rogen-f s t <u>o</u> lera RDB <u>e</u> c	R <u>u</u> le: ance quiv: -	Cł Even el 1.00 1.0-100	narge: 1 ectron ior	ns m			
Limi	ts Nit Mas F	rogen-f s t <u>o</u> lera RDB <u>e</u> c n use-	R <u>u</u> le: [ance [quiv: [-	Cł Even ele 1.00 1.0-100	narge: 1 ectron ior .0	ns m			
Ele	ts Nit Mas f ments i xtope	rogen-f s t <u>o</u> lera RDB <u>e</u> c n use – Min	Rule: ance quiv: Max	Ct Even ele 1.00 11.0-100 DB eq.	narge: 1 ectron ior .0 Mas	ns m			
Ele Isc		rogen-f s tolera RDB <u>e</u> r n use – Min	Rule: ance quiv: Max	Ct Even eld 1.00 1.0-100 DB eq. 0.5	narge: 1 ectron ion .0 Mas 14.00	113 115 m 15 03			
Ele 1so		rogen-f s t <u>o</u> lera RDB <u>e</u> c n use – Min 0	Rule: ance quiv: Max 4 20	Even ele 1.00 1.0-100 0.5 0.5	arge: 1 ectron ior .0 Mas 14.09	s 03 95			
Ele Isc 1 1	- ts Mas f ments i stope 4 N 6 O 2 C	rogen-f s tolera RDB <u>e</u> r n use Min 0 0	Rule: ance quiv:	Even ele 1.00 1.0-100 0.5 0.0 1.0	>jm harge: 1 ectron ior ppr .0 14.00 14.00 15.99 12.00 12.00	s 00 00 00 00 00			
Ele 130 1 1 1 1 1 1 1 1 1 1 1 1 1		rogen-f s tolera RDB <u>e</u> c n use Min 0 0 0	Rule: ance quiv:	Even ele 1.00 1.0-100 0.5 0.0 1.0 -0.5	Darge: 1 ectron ior .0 Mas 14.00 15.99 12.00 27.00	m s 3 3 3 5 00 08 77			
Ele 1 1 1 2 -		rogen-f s t <u>o</u> lera RDB <u>e</u> c n use Min 0 0 0 0	Rule: ance quiv:	Even ele 1.00 1.0-100 0.5 0.0 1.0 -0.5 1.0 	marge: 1 ectron ion ppr .0 Mas 14.00 15.99 12.00 1.00 27.93	s 03 95 00 08 77			

40 possible elemental formulae for m/z 1075.2836 at 1 ppm; but by locating any other known formula in series on the plot, Kendrick defect mapping can determine the correct assignment ($C_{29}H_{88}O_{14}Si_{14}Na^+$)

Mass Mapping in Practice: Polypropylene Syringe Extractables

Comparative 3D van Krevelen diagrams

Mass Mapping in Practice: Polypropylene Syringe Extractables

Comparative 3D van Krevelen diagrams (expanded)

Several Novel Approaches Examined, One Example: Determining Chemical Formula Relationships

- Detect monoisotopic peaks
- Determine charge state
- Generate an *autocorrelation spectrum* using Fourier transform methods
- Autocorrelation spectrum has peaks corresponding to *m/z differences* source spectrum
- Apply Kendrick mass defect methods to classify peaks based on formula relationships
- Group related compositions using hierarchical clustering or automated van Krevelen plot analysis

Several Novel Approaches Examined, One Example: Determining Chemical Formula Relationships

accurate m/z difference correlation

	Formula	.055	Calc Mass	Expt Mass	Mono Inty	Abs Error	mDa Error	ppm Error
1	н20		18.0106	18.0106	675963072	0.000055	0.06	3.06
2	со		27.9949	27.9949	988126208	0.000013	-0.01	-0.47
3	C2H4		28.0313	28.0313	8958516224	0.000010	-0.01	-0.37
4	СН2О2		46.0055	46.0054	5211857920	0.000071	-0.07	-1.55
5	СЗН4О		56.0262	56.0261	1176259584	0.000088	-0.09	-1.57
6	СЗН6О2		74.0368	74.0367	7576710656	0.000065	-0.07	-0.88
7	С5H8O		84.0575	84.0574	799050624	0.000101	-0.10	-1.20
8	C4H6O3		102.0317	102.0316	552958464	0.000080	-0.08	-0.79
9	C5H10O2		102.0681	102.0680	5281296384	0.000079	-0.08	-0.78
10	C4H8O4		120.0423	120.0421	1193746816	0.000126	-0.13	-1.05
11	С6Н10ОЗ		130.0630	130.0629	842935104	0.000121	-0.12	-0.93
12	C7H14O2		130.0994	130.0993	1729864064	0.000091	-0.09	-0.70
13	C8H14O3		158.0943	158.0941	606668480	0.000169	-0.17	-1.07

Identify monoisotopic peaks, charge state and assign chemical formula differences

Basis for a *self-calibrating* mass map

EMMA (E&L Mass Mapping Assessment) with Investigator

Autocorrelation and determining chemical relationships using Kendrick Mass Defect analysis

EMMA (E&L Mass Mapping Assessment) with Investigator

Composition and formula generation with van Krevelen plots

Copyright © 2018 Eli Lilly and Company

EMMA (E&L Mass Mapping Assessment) with Investigator and SAM (Similarity Attributes Mapping)

Copyright © 2018 Eli Lilly and Company

EMMA (E&L Mass Mapping Assessment) with *Investigator* and *SAM* (Similarity Attributes Mapping)

Copyright © 2018 Eli Lilly and Company

 A traditional spectral library is a collection of *individual* spectra representing individual chemical entities

 A mass mapping library is a collection of sets of spectra representing complex mixtures of structurally and compositionally diverse chemical entities, characteristic of a unique and complex material profile (e.g. elastomer or plastic fingerprint)

Standardized scannable images (e.g. "QR Codes") represent unique, highly complex mixture and material "fingerprints" that can be compared both qualitatively and quantitatively

Pairwise or batch comparison with a reference material and index of similarity or dissimilarity

Likewise, 3-D...

High resolution digitized image grouping to evaluate change over time (pixelated 2-D or voxelated 3-D image)

In Conclusion, Mass Mapping Enables...

- Simple, intuitive approach to enabling rapid "at-a-glance" heuristic assessment and visualization of highly complex mixtures of structurally and compositionally diverse chemical entities
- Graphically sorting complex mixture components by series or class based on structural and compositional features
- Confident assignment of elemental composition to higher masses with initial assignment of elemental composition to a limited number of lower MW components
- Assembly of N-dimensional self-calibrating mass maps based on mass differences
- Rapid and comprehensive pairwise and batch comparison with an index of similarity or dissimilarity
 - Change management
 - Failure mode analysis

Acknowledgments

Arup Roy Heather Weimer Mike DeFelippis Eran Benjamin Nicole Woods Guangliang (Greg) Pan Daniel Norwood (SCIO Analytical, LLC) Wolfgang Mueller Tim Baker (Procter & Gamble) Bob Strife Ryan Rodgers (NHMFL/FSU) Alan Marshall (FSU) Thomas Russell (Army Research Labs *RDECOM*)

Characterization MS, Extractables & Leachables and Elemental Impurities Team

> Allison Fields Tim Shelbourn

A very special thank you to **Qingyu Zeng** (West Pharmaceutical Services, Inc.) for preparing and providing custom rubber formulation components for this project

Many thanks to Bob Meyer (Moderator) and the PQRI/FDA 2019 Conference Organizers!

In memory of Brian McCarry, Ph.D. (1946-2013) Friend and Collaborator

Ш

Assumptions

- Positive and negative ion mass spectra were acquired, but in all cases the positive ion mass spectra were much more rich in information
- Elemental compositions can be assigned typically with < 1 ppm error depending on position in mass range
- ✓ Most organic compounds have even mass (depending on N content), so the majority of peaks represent [M+H]⁺ or [M+Na]⁺ ions and are therefore observed at odd m/z values
- The majority of peaks at even m/z are ¹³C isotope peaks of molecules with peaks at odd masses. However, some PEG series are uniquely [M+NH₄]⁺ adducts and are observed at even m/z
- ✓ The majority of peaks observed at odd m/z are singly charged ions, confirmed by ensuring that corresponding ¹³C isotope peaks are present at unit mass difference
- ✓ The primary peaks observed and processed do not have two ¹³C atoms