IN SILICO MODELING APPROACHES TOWARDS ESTABLISHING ROBUST DESIGN AND CONTROL STRATEGIES: BIO/PHARMA INDUSTRY PERSPECTIVE

CENK ÜNDEY, PhD PROCESS DEVELOPMENT

4th PQRI/FDA Conference on Advancing Product Quality, Rockville, MD, Apr.9-11, 2019

OUTLINE

- Process and product development paradigm
 - Prior knowledge, empirical, first principles, ML approaches
- Case Studies:
 - First principles modeling based UFDF for buffer composition predictions
 - Drug product T/P filling process modeling
 - Process monitoring and predictive control examples
 - Incorporating PAT and models towards control strategy

OUTLINE

- Process and product development paradigm
 - Prior knowledge, empirical, first principles, ML approaches
- Case Studies:
 - First principles modeling based UFDF for buffer composition predictions
 - Drug product T/P filling process modeling
 - Process monitoring and predictive control examples
 - Incorporating PAT and models towards control strategy

IN SILICO MODELING HAS SIGNIFICANT POTENTIAL TO INCREASE SPEED AND EFFICIENCIES OF PROCESS AND PRODUCT DEVELOPMENT

RISK ASSESSMENT, DESIGN SPACE AND CONTROL STRATEGY ARE KEY IN SETTING UP PERFORMANCE-BASED CONTROL

Product Development and Realisation Case Study A-Mab*

		Q	uality A	\ttribut	es		Process Attributes		Risk Mitigation		
Process Parameter in Production Bioreactor	Aggregate	aFucosylation	Galactosylation	Deamidation	НСР	DNA	Product Yield	Viability at Harvest	Turbidity at harvest		
Inoculum Viable Cell Concentr										DOE	
Inoculum Viability										Linkage S	tudies
Inoculum in Vitro Cell Age										EOPC Study	
N-1 Bioreactor pH										Linkage Studies	
N-1 Bioreactor Temperature										Linkage S	tudies
Osmolality										DOE	
Antifoam Concentration										Not Reg	uired
Nutrient Concentration in medium										DOE	
Medium storage temperature										Medium Hol	d Studies
Medium hold time before filtration										Medium Hole	d Studies
Medium Filtration										Medium Hol	d Studies
Medium Age										Medium Ho	Design 9
Timing of Feed addition										Not Rev	Designe
Volume of Feed addition										DO	
Component Concentration in Feed										DO	
Timing of glucose feed addition										DOE-In	ž
Amount of Glucose fed										DOE-In	
Dissolved Oxygen										DO	
Dissolved Carbon Dioxide										DO	
Temperature										DO	
pН										DO	CC
Culture Duration (days)										DO	
Remnant Glucose Concentration										DOE-In	3

Table 3 13 Results of the Risk Analysis Performed in the Production and N-1 Bioreactors

Product Development and Realisation Case Study A-Mab

Procedure

In Vitro Cel

eed Density

Vlability

N-1 Bioreact

Temperature

рН

Time of Feeding

Shear

Mixin

Transfe

Scale

Vorking

Volume # of

Impellers Iominal

olumne

Désign

Baffles

Airflow

arger Desig

Antifoam

Filtration

Harvest

Duration

Aggredates

Fucosylation Galactosylation CEX AV

> HCP DNA

AMGEN

[Antifoam]

INaHCO3I

[Glucose] Osmolality

Concentration

Production

Bioreactor

Parameters

CO2

DO

Temperatu

PRIOR KNOWLEDGE ASSESSMENT AND AGGREGATING HISTORICAL DATA FOR PLATFORM PROCESSES OFFER UNIQUE ADVANTAGES TOWARDS PROCESS DESIGN AND PROCESS PERFORMANCE QUALIFICATION (PPQ)

Information can be Aggregated to Understand Variance Across Similar Process Unit Operations

Principals of Aggregating Information							
Cell Culture Expansion							
_	Specific attribute Specific process step						
Attribute	Product Modality	Process Design	Unit Operation	Raw Materials	•		
Product	MAb	Similar	Similar	Common	•		
Group					:		
Op	 Assessment of the similarity of process design and implementation Define products contained in the Group 						
+ Total Variance Materials Total variance is the sum							
Measurement of contributing sources							
Courtesv of Dr. Roger Hart							

Catalog of process information is needed to support assessment of process design and implementation similarity

AMGEN[®] 35 YEARS

Empimical Bayes approach leverages knowledge of similar attributes to improve accuracy of limits

5

Classical Approach

performance parameter for a single process

used to manufacture a product to determine

Calculate Mean and Variance for a

1). Determine mean and standard

limits.

deviation

Empirical Bayes

Use existing data to form a Bayesian model that predicts the tolerance interval of a performance parameter based on simulation for the performance parameter

> 1). Demonstrate Similarity in Variance (HOV Test)

2). Calculate Limits Control Limits: $CL = \overline{x} \pm 3\sigma$ Tolerance Interval: $TL = \overline{x} \pm k\sigma$

For low run rate products, significant amount of time may be required to establish accurate variance estimates

- 2). Obtain Statistical Measures of Prior Information
- 3). Simulate to Determine Quantiles of Interest

¹Wolfinger, (1998). Tolerance Intervals for Variance Composite Models Using Bayesian Simulation. *Journal of Quality Technology*, *30* (18-32).

Use portfolio data to simulate uncertainty in reference product mean and variance. Overcome concerns with small sample sizes.

AMGEN'

ADVANCES IN COMPUTATIONAL POWER AND SCIENTIFIC UNDERSTANDING ARE ENABLING MORE MODELING OF BIOPHARMACEUTICALS PD & MFG

- Much of the current modeling has its roots in engineering, biology, chemistry, physics and fluid mechanics (mass transfer, kinetics, etc.)
- In some cases, current scientific understanding and/or analytical resolution insufficient to utilize mechanistic modeling

- Convergence of disciplines: in silico modeling to enable Smart PD computational platforms
 - *in silico* experiments for Process Characterization
 - Predictive modeling for RM selection and variation control
 - in silico tooling and device design

Q11 - Design and conduct studies (e.g., mechanistic and/or kinetic evaluations, multivariate design of experiments, simulations, modeling) to identify and confirm the links and relationships of material attributes and process parameters to drug substance CQAs

WE ARE ADVANCING THE USE OF FIRST PRINCIPLES MODELING IN PROCESS, PRODUCT DEVELOPMENT AND IN MANUFACTURING

THE MODELING PROCESS (IDEALIZED)

MODEL-BASED PROCESS DEVELOPMENT

Reducing costly and time consuming experimentation

Calibration and validation of first-principles model required a small number of targeted experiments

 a fraction of conventional DOE-based process characterization approaches

More operating parameters and wider ranges explored via fast and inexpensive "*in-silico*" experiments

- investigating parameters difficult to study experimentally (e.g., bed compaction)
- replacing costly or time-demanding experiments (e.g., column size)

WE HAVE BEEN ADVANCING DEEP LEARNING APPLICATIONS TO CREATE SIGNIFICANT EFFICIENCIES TOWARDS ACCELERATING PD

AMGEN[°]

OUTLINE

- Process and product development paradigm
 - Prior knowledge, empirical, first principles, ML approaches
- Case Studies:
 - First principles modeling based UFDF for buffer composition predictions
 - Drug product T/P filling process modeling
 - Process monitoring and predictive control examples
 - Incorporating PAT and models towards control strategy

GOAL: ACCURATELY PREDICT pH AND EXCIPIENT CONCENTRATIONS IN PROTEIN DRUG SUBSTANCE

Challenge: High concentrations of charged mAb during UF/DF commonly result in offsets in pH/excipients between UF/DF pool and formulation buffer

- Molecular basis for this offset is the selective retention or rejection of ions due to:
 - Charge interactions between ions and the protein: ions attracted or repelled
 - Volume exclusion: solutes excluded from volume occupied by high concentration of mAb

FIRST PRINCIPLES UNDERSTANDING OF UF/DF AND BUFFER EXCIPIENTS WAS USED VIA IN SILICO MODELING TO REDUCE WET EXPERIMENTS DURING PC

Poisson-Boltzmann Theory is applied to establish the distribution of solutes around the protein

14

Over-concentration and recovery flush to achieve the

target final protein concentration

3)

Ion distribution from the Poisson-Boltzmann

calculation

Model Citrate

Exp. Citrate

Model Acetate

AMGEN

Exp. Acetate

IN SILICO DOE: MECHANISTIC MODEL OF EXCIPIENT EXCHANGE DURING PROTEIN ULTRAFILTRATION & DIAFILTRATION (MUD)

- (Right→) In-silico DoE performed in MUD to explore the formulation buffer design space for targeted experimentation
- (Below↓) Worst-case buffer conditions were tested experimentally and results agreed with MUD predictions

Buffer Conditions	Result Source	Acetate (mM)	Phe (mM)	Sorbitol (%)	Osmolality (mOsm)	рН
Buffer Formulation #1	Exp. – Pred.	2.0	2.1	0	3	0.02
Buffer Formulation #2		0.3	0.4	0.31	7	0.02

OUTLINE

- Process and product development paradigm
 - Prior knowledge, empirical, first principles, ML approaches
- Case Studies:
 - First principles modeling based UFDF for buffer composition predictions
 - Drug product T/P filling process modeling
 - Process monitoring and predictive control examples
 - Incorporating PAT and models towards control strategy

TIPCOM USE IN DP FILLING PROCESS DEVELOPMENT

ТІРСОМ 3.0

AN EVOLUTION IN DEPLOYMENT

- IMPROVED USER INTERFACE
- CUSTOMIZED EQUIPMENT-BASED APPS ٠

...

- SITE- AND LINE-SPECIFIC WORKFLOWS ٠
- AUTO-GENERATED PDF REPORTS ٠
- **CROSS-PLATFORM** ٠
- NO INSTALLATION REQUIRED .
- VALIDATED (TECH REPORT) ٠

TIPCOM FILLING PROCESS CHARACTERIZATION PRIOR TO B6 BENCHTOP CHARACTERIZATION ENABLED:

- ✓ **33% TIME SAVINGS** IN WET EXPERIMENTS
- **ELIMINATION OF EXPERIMENTS AT COMMERCIAL LINE** \checkmark
- ✓ ASSURANCE OF **OPTIMAL** RECIPE SELECTION
- ✓ HIGHLY CAPABLE FILLING PROCESS (C_{PK}: 5.0-9.0)

OUTLINE

- Process and product development paradigm
 - Prior knowledge, empirical, first principles, ML approaches
- Case Studies:
 - First principles modeling based UFDF for buffer composition predictions
 - Drug product T/P filling process modeling
 - Process monitoring and predictive control examples
 - Incorporating PAT and models towards control strategy

BIOPHARMACEUTICAL PROCESSES, COMPRISED OF CONSECUTIVE UNITS, GENERATE ABUNDANT DATA: <u>PERFORMANCE-BASED CONTROL IS CRITICAL</u>

PERFORMANCE PREDICTION MODEL CAN BE USED TO ADJUST CULTURE DURATION FOR OVER SEEDED BATCHES

MULTIVARIATE PREDICTIVE MODEL DEVELOPED AND DEPLOYED FOR PERFORMANCE-BASED CONTROL FOR SEED BIOREACTORS

AMGEN

KPI'S AND PQA'S ARE PREDICTED TO CONTROL BIOREACTOR CULTURE HARVEST*

ENHANCED CONTINUED PROCESS VERIFICATION (eCPV) CAN ENABLE HOLISTIC PERFORMANCE-BASED MONITORING AND CONTROL

- Hierarchical modeling
 helps identifying variability
 within and across unit
 operations between
 process and product
 performance variables in
 real time
- Batch fingerprints are generated to compare batch behavior to historical batches

eCPV HELPS IDENTIFYING VARIABILITY WITHIN AND ACROSS UNIT OPERATIONS BETWEEN PROCESS AND PRODUCT PERFORMANCE VARIABLES

Model suggested an increase in PQA2 in BDS pool was correlated to a Phase N in Unit Operation 2

MACHINE LEARNING-BASED PREDICTIVE METHODS ARE PROVEN PROMISING: COMBINING DATA FROM DIFFERENT SCALES IMPROVED THE CQA PREDICTIONS

	MFG Scale Only	Combined
Training	MFG Site A (8)	MFG Site A (8) + Bench-scale (29)
Testing	MFG Site B (6)	MFG Site B (6)

Method	RMSE	Performance	
PLS (MFG data)	38.577	-	
PLS (Combined data)	23.519	+	
SVM (Combined data)	35.170	+	
GP (Combined data)	30.565	+	
RF (Combined data)	47.050	+	
CNN (Combined data)	22.414	+	

Convolutional Neural Networks

OUTLINE

- Process and product development paradigm
 - Prior knowledge, empirical, first principles, ML approaches
- Case Studies:
 - First principles modeling based UFDF for buffer composition predictions
 - Drug product T/P filling process modeling
 - Process monitoring and predictive control examples
 - Incorporating PAT and models towards control strategy

CONTINUOUS MANUFACTURING BIOREACTOR OPERATION: CONTROL AND LOT STRATEGY

Key considerations for the Cell Culture process

- Supporting high cell densities for extended durations
- Cell separation at high cell densities
- Perfusion rates, media formulation, liquid handling
- Lot strategy
- Detect and segregate NC material

TARGETED HIGH MANNOSE CONTROL IS ACHIEVED USING MPC METHOD

(1)
$$\frac{dN}{dt} = \frac{\mu N(N_{\rm m} - N)}{N_{\rm m}}$$
(5)
$$\frac{dH}{dP} = F_{\rm H}M$$
(2)
$$\frac{dP}{dt} = q_{\rm p}N - S D P$$
(6)
$$F_{\rm H} = K_1 * (K_2 + N)$$
(3)
$$\frac{dM}{dt} = D(M_{\rm f} - M) - q_{\rm M}N$$
(7)
$$\frac{dH}{dt} = \frac{dH}{dP}\frac{dP}{dt} = q_{\rm p}K_1(K_2 + N)MN$$
(4)
$$q_{\rm M} = \frac{V_{\rm M}M}{K_{\rm M} + M}$$

Slide courtesy of Jack Huang

(Zupke et al. 2015, Biotechnol Prog)

OVERVIEW OF GLUCOSE FEEDBACK CONTROL STRATEGY

MODEL PREDICTIVE CONTROL FRAMEWORK ENABLES PERFORMANCE-BASED CONTROL

EXPERIMENTS WERE USED TO DETERMINE THE APPROPRIATE LEVERS TO CONTROL PQA; FEED A AND FEED B ACT IN OPPOSITE DIRECTIONS AS IDEAL LEVERS FOR MPC

WE WERE ABLE TO MEET PQA TARGET WITHIN +/- 2.5% OF ITS DESIRED VALUE USING MPC IN PRODUCTION BIOREACTOR

ROBUSTNESS AND CONTROL OF OPERATING SPACE CAN BE IMPROVED USING PAT AND FIRST PRINCIPLES MODELS

CONCLUSIONS

In silico first principles modeling:

- is an instrumental tool for rapid process design and knowledge-based manufacturing
- enables an efficient use of experimental efforts
- enables a richer characterization of the robust design space
- can enable next-generation process monitoring and control applications

Augmented with PAT, sensors and *in silico* models offer advanced process performance management capabilities

Artificial Intelligence and Machine Learning-based *in silico* models are emerging, offering unique opportunities in bio/pharma

Every patient, every time

ACKNOWLEDGEMENTS

- Tony Wang
- Seyma Bayrak
- Sinem Oruklu
- Pablo Rolandi
- Xiaoxiang Zhu
- Fabrice Schlegel
- Richard Wu
- Jack Huang

- Will Johnson
- Chris Garvin
- Myra Coufal
- Gerd Kleemann
- Deirdre Piedmonte
- Stephen Brych
- Justin Ladwig

- Roger Hart
- Karin Westerberg

