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• Process and product development paradigm
– Prior knowledge, empirical, first principles, ML approaches

• Case Studies:
– First principles modeling based UFDF for buffer composition 

predictions
– Drug product T/P filling process modeling 
– Process monitoring and predictive control examples
– Incorporating PAT and models towards control strategy

OUTLINE
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IN SILICO MODELING HAS SIGNIFICANT POTENTIAL TO INCREASE SPEED 
AND EFFICIENCIES OF PROCESS AND PRODUCT DEVELOPMENT

Pre-PT FIH 
Development

Clinical 
Support

Commercial 
Process 

Development
Commercial 

Advancement
Commercial 

Support

First principles 
predictive modeling
(reduced wet exp.)

Cell Line Selection
Cell Line Development 

Increased data flow, digitalization and in silico model use across the product lifecycle

Process and Product Performance
Management

Predictive modeling 
for QTPP
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RISK ASSESSMENT, DESIGN SPACE AND CONTROL STRATEGY ARE KEY IN 
SETTING UP PERFORMANCE-BASED CONTROL

* CMC Biotech WG, 2009, A-Mab: A Case Study in Bioprocess Development. V2.1

*
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PRIOR KNOWLEDGE ASSESSMENT AND AGGREGATING HISTORICAL DATA 
FOR PLATFORM PROCESSES OFFER UNIQUE ADVANTAGES TOWARDS 
PROCESS DESIGN AND PROCESS PERFORMANCE QUALIFICATION (PPQ)

Courtesy of Dr. Roger Hart
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• Much of the current modeling has its roots in engineering, biology, 
chemistry, physics and fluid mechanics (mass transfer, kinetics, etc.)

• In some cases, current scientific understanding and/or analytical 
resolution insufficient to utilize mechanistic modeling

ADVANCES IN COMPUTATIONAL POWER AND SCIENTIFIC UNDERSTANDING ARE
ENABLING MORE MODELING OF BIOPHARMACEUTICALS PD & MFG

Q11 - Design and conduct studies (e.g., mechanistic and/or kinetic evaluations, multivariate design of experiments, 
simulations, modeling) to identify and confirm the links and relationships of material attributes and process parameters to 

drug substance CQAs 

• Convergence of disciplines: 
in silico modeling to enable Smart PD
computational platforms

• in silico experiments for Process Characterization
• Predictive modeling for RM selection 

and variation control
• in silico tooling and device design
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WE ARE ADVANCING THE USE OF FIRST PRINCIPLES MODELING IN 
PROCESS, PRODUCT DEVELOPMENT AND IN MANUFACTURING

TODO: Chrom

Fluid VelocityApplied
Force
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THE MODELING PROCESS (IDEALIZED)

4. Solution
Analysis

3. Numerical
Approximation

2. Problem
Formulation

1. Domain
Definition
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Calibration and validation of first-principles model required a small number of 
targeted experiments

• a fraction of conventional DOE-based process characterization 
approaches

More operating parameters and wider ranges explored via fast and 
inexpensive “in-silico” experiments

• investigating parameters difficult to study experimentally (e.g., bed 
compaction)

• replacing costly or time-demanding experiments
(e.g., column size)

Reducing costly and time consuming experimentation

MODEL-BASED PROCESS DEVELOPMENT
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Automated Cytopathic Effect (CPE) Detection via Deep Learning

WE HAVE BEEN ADVANCING DEEP LEARNING APPLICATIONS TO CREATE 
SIGNIFICANT EFFICIENCIES TOWARDS ACCELERATING PD

Deep CNN

ANN

https://www.tutorialspoint.com/python_deep_learning/python_deep_learning_deep_neural_networks.htm
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GOAL: ACCURATELY PREDICT pH AND EXCIPIENT CONCENTRATIONS 
IN PROTEIN DRUG SUBSTANCE

Challenge: High concentrations of charged mAb during UF/DF commonly result in 
offsets in pH/excipients between UF/DF pool and formulation buffer
• Molecular basis for this offset is the selective retention or rejection of ions due to:

– Charge interactions between ions and the protein: ions attracted or repelled
– Volume exclusion: solutes excluded from volume occupied by high concentration of mAb
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FIRST PRINCIPLES UNDERSTANDING OF UF/DF AND BUFFER EXCIPIENTS 
WAS USED VIA IN SILICO MODELING TO REDUCE WET EXPERIMENTS 
DURING PC

Model Verification

Model Prediction
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IN SILICO DOE: MECHANISTIC MODEL OF EXCIPIENT EXCHANGE DURING 
PROTEIN ULTRAFILTRATION & DIAFILTRATION (MUD)

• (Right→) In-silico DoE performed in MUD to explore the 
formulation buffer design space for targeted experimentation 

• (Below↓) Worst-case buffer conditions were tested 
experimentally and results agreed with MUD predictions

Buffer 
Conditions

Result 
Source

Acetate 
(mM)

Phe
(mM)

Sorbitol 
(%)

Osmolality 
(mOsm) pH

Buffer 
Formulation #1

| Exp. – Pred. |
2.0 2.1 0 3 0.02

Buffer 
Formulation #2 0.3 0.4 0.31 7 0.02

Process robustness:
Model accurately predicts 
UF/DF pool pH
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• Process and product development paradigm
– Prior knowledge, empirical, first principles, ML approaches

• Case Studies:
– First principles modeling based UFDF for buffer composition predictions
– Drug product T/P filling process modeling
– Process monitoring and predictive control examples
– Incorporating PAT and models towards control strategy

OUTLINE



17

TIPCOM RECOMMENDATIONS
FOLLOWED, SUBSTITUTING
LOGISTICALLY PREFERRED TUBING

EXTENDED DOSING TIME TO
ACCOMMODATE TUBING
(TDOSE > 0.6 S)

CPK: 5.0-9.0

BENCHTOP FILLER

TIPCOM USE IN DP FILLING PROCESS DEVELOPMENT

• TARGET FILL VOLUME
• VISCOSITY
• DENSITY
• VIAL GEOMETRY

SKU CHARACTERISTICS

• ORIFICE GEOMETRY
• NEEDLE DIMENSIONS
• TUBING DIMENSIONS
• PINCH VALVE GEOMETRY

HARDWARE CHARACTERISTICS

Formalisms

INPUT ODE
PDE
(FEA,
CFD)

FILL
CHARACTERISTICS

MOTOR
DISPLACEMENT

DOSING
CONTROL

PRODUCT
TEMPERATURE,

PRESSURE

FLOW IN
FILLING SET

FLOW IN
COMPRESSED

TUBE

RECIPE

ALGEBRAIC

TIPCOM

DESIGN SPACE IN-SILICO PROCESS CHARACTERIZATION DESIGN CANDIDATES
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OFFLINE CONFIRMATION

<1 HOUR TO COMPLETE IN-SILICO
PROCESS CHARACTERIZATION

32 FILLING SETS, 6720 RECIPE SETTINGS EXPLORED
• 6 USABLE FILLING SETS IDENTIFIED
• 2 FILLING SETS W/ RECIPES RECOMMENDED

TIPCOM-RECOMMENDED RECIPES

TIPCOM FILLING PROCESS CHARACTERIZATION PRIOR TO B6 BENCHTOP
CHARACTERIZATION ENABLED:

 33% TIME SAVINGS IN WET EXPERIMENTS

 ELIMINATION OF EXPERIMENTS AT COMMERCIAL LINE

 ASSURANCE OF OPTIMAL RECIPE SELECTION

 HIGHLY CAPABLE FILLING PROCESS (CPK: 5.0-9.0)

AN EVOLUTION IN DEPLOYMENT

• IMPROVED USER INTERFACE

• CUSTOMIZED EQUIPMENT-BASED APPS

• SITE- AND LINE-SPECIFIC WORKFLOWS

• AUTO-GENERATED PDF REPORTS

• CROSS-PLATFORM

• NO INSTALLATION REQUIRED

• VALIDATED (TECH REPORT)

TIPCOM 3.0
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BIOPHARMACEUTICAL PROCESSES, COMPRISED OF CONSECUTIVE UNITS, 
GENERATE ABUNDANT DATA: PERFORMANCE-BASED CONTROL IS CRITICAL
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• Per process characterization, culture 
duration and seeding density are positively 
correlated to PQA

• A reliable real-time prediction model for 
PQAs enables improved control 

PERFORMANCE PREDICTION MODEL CAN BE USED TO ADJUST CULTURE 
DURATION FOR OVER SEEDED BATCHES
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MULTIVARIATE PREDICTIVE MODEL DEVELOPED AND DEPLOYED FOR 
PERFORMANCE-BASED CONTROL FOR SEED BIOREACTORS

Open-loop control
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KPI’S AND PQA’S ARE PREDICTED TO CONTROL BIOREACTOR CULTURE 
HARVEST*

* Undey et al., 2015, Predictive Monitoring and Control Approaches in Biopharmaceutical Manufacturing, European Pharmaceutical Review, 20(4), pp. 63-69 .

Open-loop control
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• Hierarchical modeling 
helps identifying variability 
within and across unit 
operations between 
process and product 
performance variables in 
real time

• Batch fingerprints are 
generated to compare 
batch behavior to historical 
batches
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HOLISTIC PERFORMANCE-BASED MONITORING AND CONTROL
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eCPV HELPS IDENTIFYING VARIABILITY WITHIN AND ACROSS UNIT 
OPERATIONS BETWEEN PROCESS AND PRODUCT PERFORMANCE VARIABLES 
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MACHINE LEARNING-BASED PREDICTIVE METHODS ARE PROVEN PROMISING: 
COMBINING DATA FROM DIFFERENT SCALES IMPROVED THE CQA PREDICTIONS

MFG Scale Only Combined

Training MFG Site A (8) MFG Site A (8) + Bench-scale (29)

Testing MFG Site B (6) MFG Site B (6)

Convolutional Neural Networks

Input Data
(Predictors)

C
Q

A



26

• Process and product development paradigm
– Prior knowledge, empirical, first principles, ML approaches

• Case Studies:
– First principles modeling based UFDF for buffer composition predictions
– Drug product T/P filling process modeling
– Process monitoring and predictive control examples
– Incorporating PAT and models towards control strategy

OUTLINE



27

CONTINUOUS MANUFACTURING BIOREACTOR OPERATION: 
CONTROL AND LOT STRATEGY

Key considerations for the Cell Culture process

• Supporting high cell densities for extended durations

• Cell separation at high cell densities

• Perfusion rates, media formulation, liquid handling

• Lot strategy

• Detect and segregate NC material

0
0 Time

Bi
om
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s

Initiate material collection 

Cell Expansion

Lot #1

Steady-State Production

Lot #2 Lot #3 Lot 
#N
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TARGETED HIGH MANNOSE CONTROL IS ACHIEVED USING MPC METHOD
Slide courtesy of Jack Huang

Automation – Closing the loop for PQA Control
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OVERVIEW OF GLUCOSE FEEDBACK CONTROL STRATEGY

Glucose Control Logic:

1. The control equation is based on mass balance of 
the system

2. The control equation is checked at a set frequency 
to determine if glucose addition is required

Actual vs. Predicted 
Glucose

Residual Plot

MVA Model

Raman 
Spectra

Raman 
AnalyzerBioreactor

Real time 
Glucose 

Value
DeltaV

Automation 
System

Logic:

If Glucose 
value is less 
than Glucose 

target 

Turn 
pump 

on

Real-Time Glucose Feedback Control

Glucose 
MVA Model 

Development

• Other typical cell culture measurements (e.g., lactate, 
glutamine, VCD, viability, pCO2, osmolality, etc.) can 
also be correlated to Raman spectra 

Glucose 
Pump

(Source: Watson-Marlow)

Automation – Closing the loop with Process 
Analytical Chemistry Tools
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MODEL PREDICTIVE CONTROL FRAMEWORK ENABLES PERFORMANCE-
BASED CONTROL
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EXPERIMENTS WERE USED TO DETERMINE THE APPROPRIATE LEVERS TO CONTROL 
PQA; FEED A AND FEED B ACT IN OPPOSITE DIRECTIONS AS IDEAL LEVERS FOR MPC

Automation – Closing the loop for PQA Control
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WE WERE ABLE TO MEET PQA TARGET WITHIN +/- 2.5% OF ITS DESIRED 
VALUE USING MPC IN PRODUCTION BIOREACTOR

• Two control points were available in this run
• MPC used to add Feed A and/or Feed B at control points

Control Points

Automation – Closing the loop for PQA Control
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First-principles
models

PAT Method 1: MALS for Controlling %HMW species

PAT Method 2: 
First principles model for 
controlling %HMW species 

* Rathore et al., 2010, Large Scale Demonstration of a Process Analytical 
Technology Application in Bioprocessing, Biotechnology Progress, 26(2), 448.

ROBUSTNESS AND CONTROL OF OPERATING SPACE CAN BE IMPROVED 
USING PAT AND FIRST PRINCIPLES MODELS
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Every patient, every time

CONCLUSIONS

In silico first principles modeling:

• is an instrumental tool for rapid process design and knowledge-based 
manufacturing

• enables an efficient use of experimental efforts
• enables a richer characterization of the robust design space
• can enable next-generation process monitoring and control 

applications

Augmented with PAT, sensors and in silico models offer 
advanced process performance management capabilities

Artificial Intelligence and Machine Learning-based in silico 
models are emerging, offering unique opportunities in 
bio/pharma
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