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OUTLINE

- Process and product development paradigm
— Prior knowledge, empirical, first principles, ML approaches

- Case Studies:
— First principles modeling based UFDF for buffer composition
predictions
— Drug product T/P filling process modeling
— Process monitoring and predictive control examples
— Incorporating PAT and models towards control strategy
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IN SILICO MODELING HAS SIGNIFICANT POTENTIAL TO INCREASE SPEED
AND EFFICIENCIES OF PROCESS AND PRODUCT DEVELOPMENT

FIH Cllnlcal C?Drporgg;(;lal ; Commercial ; Commercial iﬁ
Development Support Development Advancement Support
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RISK ASSESSMENT, DESIGN SPACE AND CONTROL STRATEGY ARE KEY IN
SETTING UP PERFORMANCE-BASED CONTROL

Product Development and Fealisation Case Study AMab* Product Development and Realisation Case Study A-Mab
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PRIOR KNOWLEDGE ASSESSMENT AND AGGREGATING HISTORICAL DATA
FOR PLATFORM PROCESSES OFFER UNIQUE ADVANTAGES TOWARDS
PROCESS DESIGN AND PROCESS PERFORMANCE QUALIFICATION (PPQ)

Information can be Aggregated to Understand
Variance Across Similar Process Unit Operations

Principals of Aggregating Information

tai Cell Culture
= Expansion

4

Attribute Product

Modality
Product MADb
Group

Specific attribute
Specific process step

Process Unit Raw

Design Operation Materials

Similar Similar Common

+
Analytical
Measurement

Assessment of the
similarity of process
design and implementation

Define products contained
in the Group

» Total
Variance

Total variance is the sum
of contributing sources
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Courtesy of Dr. Roger Hart
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Product
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Product
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Product
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In-Process
Performam:e
Measurements

Down-
Upstream || stream

Catalog of process information is
needed to support assessment of

process design and implementation
similarity

AMGEN' ES1Em

Empivical Bayes approach leverages knowledge of
similar attributes to improve accuracy of limits

Calculate Mean and Variance for a
performance parameter for a single process
used to manufacture a product to determine
limits.

1). Determine mean and standard
deviation

+ { | Mean _ ¥x

_% x = —

3 n

g [ Standard

7 Deviation Z(x x)?
<7 g =

.;: w0 n— 1
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2). Calculate Limits Control Limits: CL=x

Tolerance Interval: TL =%
For low run rate products, significant amount of
time may be required to establish accurate

variance estimates

+3
t+ ko

Classical Approach Empirical Bayes p

Use existing data to form a Bayesian model
that predicts the tolerance interval of a
performance parameter based on simulation for
the performance parameter

1). Demonstrate Similarity
in Variance (HOV Test)

2). Obtain Statistical
Measures of Prior
Information

3). Simulate to Determine
Quantiles of Interest

"Wolfinger, (1998). Tolerance Intervals for Variance Com p%:ﬁ'en* Models
Using Bayesian Simulation. Journal of Quality Technology, 30 (18-32).

Use portfolio data to simulate uncertainty in
reference product mean and variance.
Overcome concerns with small sample sizes.
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ADVANCES IN COMPUTATIONAL POWER AND SCIENTIFIC UNDERSTANDING ARE
ENABLING MORE MODELING OF BIOPHARMACEUTICALS PD & MFG

- Much of the current modeling has its roots in engineering, biology,
chemistry, physics and fluid mechanics (mass transfer, kinetics, etc.)

- In some cases, current scientific understanding and/or analytical
resolution insufficient to utilize mechanistic modeling

« Convergence of disciplines:
in silico modeling to enable Smart PD

computational platforms
* insilico experiments for Process Characterization
* Predictive modeling for RM selection
and variation control R -
* insilico tooling and device design ;;;;';m_‘,_m,_mmmw‘;;;j‘” . e ﬁ

manitaring: Machine-| learming methods for small data
mmmmm

=

Q11 - Design and conduct studies (e.g., mechanistic and/or kinetic evaluations, multivariate design of experiments,
simulations, modeling) to identify and confirm the links and relationships of material attributes and process parameters to
drug substance CQAs
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WE ARE ADVANCING THE USE OF FIRST PRINCIPLES MODELING IN
PROCESS, PRODUCT DEVELOPMENT AND IN MANUFACTURING
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THE MODELING PROCESS (IDEALIZED)

1. Domain 2. Problem 3. Numerical 4. Solution
Analysis

Definition Formulation Approximation

Fluid Flow AVAVAVAVAYAVAVAVAY,
O8O0
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MODEL-BASED PROCESS DEVELOPMENT

Reducing costly and time consuming experimentation (" Pulse Injection Experiments ) s 2

! open gm
Calibration and validation of first-principles model required a small number of 9 == !

targeted eXperlmentS (First-principles model operating\ Monte " D:'wlcw:;*wﬂ::‘

parameter response plots Carlo L {HAS - Possbie Range |
» a fraction of conventional DOE-based process characterization | |
approaches L process £,
o J .
- . - \L ou
More operating parameters and wider ranges explored via fast and
inexpensive “in-silico” experiments ( Prr—— D
* investigating parameters difficult to study experimentally (e.g., bed 1
compaction) Response _s 20
. . . . Surface s 15
 replacing costly or time-demanding experiments )
(e.g., column size) ’
. | " * GradieifSlope [mMIaCOV] * * W,
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WE HAVE BEEN ADVANCING DEEP LEARNING APPLICATIONS TO CREATE
SIGNIFICANT EFFICIENCIES TOWARDS ACCELERATING PD

ANN

Auto Imager

= = Cellular Image Recognition

Well plate
images

— output layer _‘
input layer
hidden layer 1 hidden layer 2 Deep >°
Manua_al learning
Inspection based
of images .
solution \
Deep C N N ’ Output ’ Well image of cell line

spots in the well Amny well with CPE spots are considered CPE

im"ﬁrlli’"' W e et o e o K o [ CPE / Non-CPE ]

rrT———————— A\ LItomated Cytopathic Effect (CPE) Detection via Deep Learning
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— Prior knowledge, empirical, first principles, ML approaches

« Case Studies:
— First principles modeling based UFDF for buffer composition predictions
— Drug product T/P filling process modeling
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GOAL: ACCURATELY PREDICT pH AND EXCIPIENT CONCENTRATIONS
IN PROTEIN DRUG SUBSTANCE

Challenge: High concentrations of charged mAb during UF/DF commonly result in
offsets in pH/excipients between UF/DF pool and formulation buffer
- Molecular basis for this offset is the selective retention or rejection of ions due to:

— Charge interactions between ions and the protein: ions attracted or repelled
— Volume exclusion: solutes excluded from volume occupied by high concentration of mADb

+
Retentate =

Zoom .|.

Zoom — 1 ‘$ ’ g\k Retentate \ , ¥
O SR CTTE S A ‘(

Permeate

UF Membra
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FIRST PRINCIPLES UNDERSTANDING OF UF/DF AND BUFFER EXCIPIENTS
WAS USED VIA IN SILICO MODELING TO REDUCE WET EXPERIMENTS

DURING PC

PREDICTIVE MECHANISTIC UF/DF PROCESS MODEL

Building on earlier work('2), a predictive UF/DF model based on Poisson-
Boltzmann theory has been developed at Amgen

Mechanistic features of the Amgen UF/DF model include:

1. Species equilibrium for both solutes and protein with pH calculation using a charge
balance approach

2.

Distribution of ions and protein surface potential using Poisson-Boltzmann theory
3.

Mass transfer of solutes through the UF/DF membrane

A predictive tool to support UF/DF development and process understanding

“Theoretcal Analysss of Excipient Concentraicers Duning e Final UF/DF Step of Therapeutic Antbody”, Fudy Miso et 8l | Biotlechnology Progress. June 2000
2 "Predicting Diafliration Sohuton C for Final Ulrati
Boengnesnng, June 2011

s of Monocional Ansbodes”, Mark Teeters i al, Biotechnology and

AMGEN

PH CALCULATED BY CHARGE BALANCE® METHOD
+ Conceptual example using H,PO, dissociation

Known: Ky, Kaa. Kaa. Cu,po, (sum of phosphate species), electroneutrality (Z = 0)
= Equilibrium relationships:

_ la)[H:Po;]

_ [H[H;P0}]
[P0, 2 [HaPO;]

[#*1[H,P03 ] _ E S 5
= [H,PL 3_; , Caypo, = [HsPO,] + [H,PO;] + [HPOZ"] + [PO}-]

= Charge neutrality constraint:

l Z==[0H"]=[H,PO;| =2-[HPO} ] =3-[PO} ] + [H*] =0, [H']=107P", [OH™]=10P"-PKw I

Activity coefficients are calculated using the Davies Equation and lumped into K, values
Protein treated as an ion family with many pK, values (amino acid residues)

Provides full accounting of ion species concentrations

Advanced pH Mesturement and Control 3 Ed, 1S4 2005, McMilan, Greg, Cameron, Robe, p 43

AMGEN

ELECTROSTATIC INTERACTION OF PROTEIN AND IONS
DESCRIBED USING POISSON-BOLTZMANN THEORY

- " Poisson-Boltzmann equation solved numerically
g to describe the electrical potential outside of a

charged protein as a function of radius ¥(r):

dY(r) 2dp(r) _ ex _enp(r

2ty T e, e
i=1

w(r) can then be used to calculate the local ion

concentrations using the Boltzmann distribution:

] € = ca,mexp(—“"‘”(r))

kT

“ MASS TRANSFER AND SIMULATION OF UF/DF PHASES

Diafiltration: constant volume buffer exchange —
inlet and outlet flow of solvent and solutes:

de;
vd_:b =Q- [cl in ~ "l.t}lfl')

Ultrafiltration: concentration stages —solvent and
solutes permeate membrane with no inlet flow:

UF Membrane

oot

deiy
Process model for all UF/DF phases: V=2 =@+ (6ip = Ciou)
1)

2)
3)

Initial batch concentration of upstream protein pool
Exchange protein into formulation buffer (Diafiltration)

where ¢, ., is dependent on:

+ Chemical speciation from the pH calculation
lon distribution from the Poisson-Boltzmann
calculation

Over-concentration and recovery flush to achieve the
target final protein concentration
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IN SILICO DOE: MECHANISTIC MODEL OF EXCIPIENT EXCHANGE DURING
PROTEIN ULTRAFILTRATION & DIAFILTRATION (MUD)

+ (Right—) In-silico DoE performed in MUD to explore the
formulation buffer design space for targeted experimentation

- (Below|) Worst-case buffer conditions were tested
experimentally and results agreed with MUD predictions

Buffer Result Acetate Phe Sorbitol Osmolality
Conditions Source (mM) (mM) (%) (mOsm)

Buffer
Formulation #1

sphate

Pho

2

Acetate

Sorbitol Phenylalanine

| Exp. — Pred. |
Buffer
Formulation #2

Osmolality

0.3 0.4 0.31 7 0.02

End

Process robustness:
Model accurately predicts I Proten

Acetate Phenylalanine pH
UF/DF pool pH
i m 95% Confidence

6.5E-03 0.60 1.62

s AMGEN



OUTLINE

Process and product development paradigm
— Prior knowledge, empirical, first principles, ML approaches

Case Studies:
— First principles modeling based UFDF for buffer composition predictions

— Drug product T/P filling process modeling
— Process monitoring and predictive control examples
— Incorporating PAT and models towards control strategy
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TIPCOM USE IN DP FILLING PROCESS DEVELOPMENT

d SKU CHARACTERISTICS — TiPCom o TiPCOM-RECOMMENDED RECIPES —_— d BENCHTOP FILLER —_—
e  TARGET FILL VOLUME 32 FILLING SETS, 6720 RECIPE SETTINGS EXPLORED TiPCOM RECOMMENDATIONS
e \ISCOSITY ProducT ® 6 USABLE FILLING SETS IDENTIFIED FOLLOWED, SUBSTITUTING
RECIPE TEMPERATURE,

e DENSITY PressuRe * 2 FILLING SETS W/ RECIPES RECOMMENDED LOGISTICALLY PREFERRED TUBING
° V|AL GEOMETRY W s Estimated Dosing Time [s] e )

bosne woron Flow fown — Bssemm SN 20T-240-10 EXTENDED DOSING TIME TO

CoNTROL DISPLACEMENT -9 COMPRESSED FILUNG SET 550 —— BES BE Filling Seli N-2.6T-240-1.1 |

Tuee — 35586 Fling S, H-2.6T= ACCOMMODATE TUBING
d HARDWARE CHARACTERISTICS - L 26 P Filing et iz 0T_24 011
035 - (Tpose > 0.65)

—— B&SBGFilling Set: N-2.4T-240-1.0

*  ORIFICE GEOMETRY L £ oo
i CHARACTERISTICS 27
* NEEDLE DIMENSIONS ReluElEnG — 8 Cp¢: 5.0-9.0
* TUBING DIMENSIONS PO i
INpUT ALGEBRAIC ODE (FEA, a3 s Ta ust [y
* PINCH VALVE GEOMETRY cr0) _ o
I = @35 2 E
<1 HOUR TO COMPLETE IN-SILICO . | ‘°
PROCESS CHARACTERIZATION " . T " o

m TPCom30 [
Gatms HIC 16 and00d 6T AL 14 B s

AN EVOLUTION IN DEPLOYMENT oo S T o TiPCOM FILLING PROCESS CHARACTERIZATION PRIOR TO B6 BENCHTOP
e IMPROVED USER INTERFACE —— CHARACTERIZATION ENABLED:

ab2157 B
L4 CUSTOMIZED EQUIPMENT-BASED APPS s OE -

o : v" 33% TIME SAVINGS IN WET EXPERIMENTS

° SITE- AND LINE-SPECIFIC WORKFLOWS
*  AUTO-GENERATED PDF REPORTS . - ) v ELIMINATION OF EXPERIMENTS AT COMMERCIAL LINE
e CROSS-PLATFORM . e
e NO INSTALLATION REQUIRED v" ASSURANCE OF OPTIMAL RECIPE SELECTION
*  VALIDATED (TECH REPORT) e o @m .

e—— : v" HIGHLY CAPABLE FILLING PROCESS (Cpy: 5.0-9.0)
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BIOPHARMACEUTICAL PROCESSES, COMPRISED OF CONSECUTIVE UNITS,
GENERATE ABUNDANT DATA: PERFORMANCE-BASED CONTROL IS CRITICAL

Upstream Cell Culture Process Downstream Purification Process Drug Substance Testing

A=A s

~ 40 Days <5 Days ! ~40 Days

v

Filling Process Drug Product Testing Drug Product Packaging Release

19 Amnﬁ



PERFORMANCE PREDICTION MODEL CAN BE USED TO ADJUST CULTURE
DURATION FOR OVER SEEDED BATCHES

Seeding Density

Culture Duration

Batches

Over-seeded
batch

Batch kept at
target
duration

Batch kept at
lower
duration

Production
Bioreactor

=

PQA

/ High PQA
A
. o ° K
° (<] ® (<]
------------------ \ Acceptable
PQA
Batches

20

 Per process characterization, culture
duration and seeding density are positively
correlated to

A reliable real-time prediction model for
enables improved control

AMGEN



|

Open-loop control

MULTIVARIATE PREDICTIVE MODEL DEVELOPED AND DEPLOYED FOR
PERFORMANCE-BASED CONTROL FOR SEED BIOREACTORS

Typical VCD vs. Time Plot

—LAL =—LCL —— Lot X g . ‘
« Accurate Final VCD prediction will
Prevent unnecessary samples
I Enable scheduling early or late transfer
g outs in advance
l « Schedule support activities early
Day A - Day B - -
Elapsed Time
Day B VCD prediction model @ Day A

Predicted VCD by Lot

Legend:
= Grey — Historical Lots
= Blue — Recent Lots

* Red (Lot n} — Low
Growth Lot

Predicted VCD

mlssrlg

Lot n

3 30 2 20 A5 0 5 15 20 2% 30 3 40

Low growth = Lot

AMGEN
quadrant
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Open-loop control

KPI’'S AND PQA’S ARE PREDICTED TO CONTROL BIOREACTOR CULTURE

HARVEST*

* Undey et al., 2015, Predictive Monitoring and Control Approaches in Biopharmaceutical Mardfacturing, European Pharmaceutical Review, 20(4), pp. 63-69 .

Bioreactor Processing

Time of Prediction

:- !' . * "
P KL
., s ,;..-*-
_:1" ull ';!.??? . _ﬁ‘#!
Glucose Viability PQA

Observed vs. Predicted Values

MNarmal Operating Range

I -

—.‘ .....

.ll’

Culture Harvest
Optimization

e

Verify Variability and
~ Model Fit of New Data
3 v,

Verify Predictions meet

fy
lzlpper (UL) and Lower (LL) Limits

LL

—

=

UL

std.dev.
e 4
Glucose Prediction ]
py —> ]
= ° Viability Prediction I 7
° E
dev. E!
- PQA Prediction ]
=7 L ] '] >
T = T T
Product Batch

t

Product Batch

Decision for Batch Extension
(within NOR)

No Extenstion

@ Batch A is below the
Viability Lower Limit

Extented

@ Batch B Meets All
Criteria for Extension

AMGEN



MV Charts for
CPP/KPPs

MV Charts
Key/Critical OPs

ENHANCED CONTINUED PROCESS VERIFICATION (eCPV) CAN ENABLE

HOLISTIC PERFORMANCE-BASED MONITORING

A i T *_ 5 e e
"'\\_‘H%wf/..--"' ' ""\\_M 117 ' "'\\_M P
Batch Fingerprint-UOP1  Batch Fingerprint-UOP2 Batch Fingerprint-UOP N
UnitOp 1 ) Unit Op 2 Unit Op N
(] (] (]
] 7] /)
E \—% N - E 4
ﬁ\\“‘wi  : L ,um‘Wm*.\w'»ik‘lw'dr’ﬂi}IN’A;"‘/’Im\}ﬁb""/'i S Ii f’lfll
risehel 'I'M‘Il.lﬂ#.-".J(-:'-\.-_ﬂ,ilt."‘wji‘vﬂl Jﬁ-—’i"_."‘\"w'-rﬂl‘ :‘*"]J:‘,l,}‘ll'vl"'.'lﬂ
e Renge "
) e ]

- 28
L

23

AND CONTROL

-8

1= Ec"; Hierarchical modeling

|oa helps identifying variability
2 within and across unit

operations between
process and product
performance variables in

real time

Batch fingerprints are
generated to compare
batch behavior to historical
batches

AMGEN



eCPV HELPS IDENTIFYING VARIABILITY WITHIN AND ACROSS UNIT

OPERATIONS BETWEEN PROCESS AND PRODUCT PERFORM

Unit Op 1

Phase 1

Phase 2
Phase N
Phase 1
Phase 2

Phase N

Variable X

-

Model suggested an

MMMMM

Phase N

ANCE VARIABLES

UnitOp 1 Unit Op 2




MACHINE LEARNING-BASED PREDICTIVE METHODS ARE PROVEN PROMISING:
COMBINING DATA FROM DIFFERENT SCALES IMPROVED THE CQA PREDICTIONS

MFG Site B (6) MFG Site A (8) Convolutional Neural Networks

18.6%

67.4%

Input Data
(Predictors)

Bench-scale (29)

MFG Scale Only Combined
Training MFG Site A (8) MFG Site A (8) + Bench-scale (29)
Testing MFG Site B (6) MFG Site B (6)
eiod [ wwoE | oriomanes |

PLS (MFG data) 38.577 - <

PLS (Combined data) 23.519 L 3 8

SVM (Combined data) 35.170 : 3

GP (Combined data) 30.565 t*

RF (Combined data) 47.050 4

CNN (Combined data) 22.414 +* 1 2 2 teh Lot > e
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OUTLINE

Process and product development paradigm
— Prior knowledge, empirical, first principles, ML approaches

Case Studies:
— First principles modeling based UFDF for buffer composition predictions

— Drug product T/P filling process modeling
— Process monitoring and predictive control examples
— Incorporating PAT and models towards control strategy
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CONTINUOUS MANUFACTURING BIOREACTOR OPERATION:
CONTROL AND LOT STRATEGY

Key considerations for the Cell Culture process Automated real-time glycan data

Galactosylation

o’ee @ 0

« Supporting high cell densities for extended durations

-

» Cell separation at high cell densities | %0 @ ’
@ el

» Perfusion rates, media formulation, liquid handling ®

* Lot strategy

« Detect and segregate NC material

Product Quality Attribute

High
Mannose -
; f lati
(40) .mooooooooooooéoooooooo.....f.........m..f... ° : arucosyiation
° : : . :
5 ) - - . . @epoesususeiiugeniongs
@) °
e o Lot #1 Lot #2 Lot #3 Lot
o #N
. -
0 ‘- 0 Time (Days)
0 Time
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Automation — Closing the loop for PQA Control

TARGETED HIGH MANNOSE CONTROL IS ACHIEVED USING MPC METHOD

AN N(Ny—N) dH Slide courtesy of Jack Huang
100 - mAb1 (1) —= v (5) 5 = FuM
?
N 75 - 2 L_ . N-spr 2+N
= — = N (6) Fu = Ki+(Ky+N)
% I
i dM _dH dP ) )
; 25 = i (3) f.l"f .’(W, M} ({\.1’\" ( ) H’I (."P h’ _qu (Ka+N)MN
T 0 ¥ : : (4) P 1]\.1M
™M= M
0 0.25 0.5 1
M:H ratio
Target HM level: 6x1%
8 . 12
Input: 7t A P w10
[Mannose], VCD, Titer, %’HM s 6 .d' _c,. i P o
S5 «— @& 8 2
c L o @
Adjust %HM target Z4 - B
J’ =3 E
s —— {a E
X2 =
Mannose feed rate 1 L] 3 =
% =24 6 s 10 1z 14 °

(Zupke et al. 2015, Biotechnol Prog) 28 AMN



Automation — Closing the loop with Process
Analytical Chemistry Tools

OVERVIEW OF GLUCOSE FEEDBACK CONTROL STRATEGY

v

f o
sl 4

L

Real time
Glucose

Value

Raman
Spectra
¥ 1% % ¢
; i Raman MVA Model
Bioreactor Analyzer
Actual vs. Predicted
Glucose
v
Glucose (;i‘i;.'
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» Other typical cell culture measurements (e.qg.,
glutamine, VCD, viability, pCO2, osmolality, etc.) can
also be correlated to Raman spectra
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(Source: Watson-Marlow)

lactate,

Glucose Control Logic:

1.

The control equation is based on mass balance of
the system

The control equation is checked at a set frequency
to determine if glucose addition is required

29

AMGEN



MODEL PREDICTIVE CONTROL FRAMEWORK ENABLES PERFORMANCE-

BASED CONTROL

Initial Conditions Disturbance (i.e. Glucose feed, pH,
(Inoc Target) raw Material, or other process

l \T_riables)

N Process
Actuator | Controller Main | ¢
levers (glucose
/77 feed, pH) +
Normal Operating Range secondary levers

of pH, temp, are control
action parameters

h

Online
Measurement

Y

Output

Output

(Process VCD, > Variables

NVCD, PQAs)
S

T~

« Normalized VCD is the

optimized y response

+ PQAs can be the y-

response constraints

Update set points

MPC (SIMCA-
Online)

Offline

Measurements
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Automation — Closing the loop for PQA Control

EXPERIMENTS WERE USED TO DETERMINE THE APPROPRIATE LEVERS TO CONTROL
PQA; FEED A AND FEED B ACT IN OPPOSITE DIRECTIONS AS IDEAL LEVERS FOR MPC

PQA - %

: /&%
'
35|t
o /1‘/"":

0 2 4 6 0 05

1 68 69 7 71 6 & 10 12

- = Target PQA

>

High initial pH results in a high PQA trajectory.
This could be corrected by using feed A as shown

with the arrow.

Feed A Feed B pH Time
Initial pH = 7.1 A Initial pH = 6.85
Feed ®

l Feed B

e _E— Target PQA

>

PQA - %

Time
Low initial pH results in a low PQA trajectory.

This could be corrected by using Feed B as shown
with the arrow.
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Automation — Closing the loop for PQA Control

WE WERE ABLE TO MEET PQA TARGET WITHIN +/- 2.5% OF ITS DESIRED
VALUE USING MPC IN PRODUCTION BIOREACTOR

Bach Fiokgien Ve cl@l i

Batch Ficktion Vo o8l Bitch Erchson Ve -: ipd

s il
- —
T e S
T
J

Control Points

Advice Future

Forecast (without Control)

Two control points were available in this run
MPC used to add Feed A and/or Feed B at control points
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ROBUSTNESS AND CONTROL OF OPERATING SPACE CAN BE IMPROVED
USING PAT AND FIRST PRINCIPLES MODELS

PAT Method 1: MALS for Controlling %HMW species
In-line Light Scattering

Risk

1200 r160 m
. . i 20% Peak Max Q
Manufacturing analysis DOE De;égn I:pa ce 24 10001 M 158 =2 -
process (FMEA) IAIen High p T o] lotl g
Aggregate sa £
7 s Lot 2 F1s2 x of
5 - w600 L — .
Gha:au:tenzallnn ranga § _'E | _150 g = \
PC models ~ Accepiable @nge £ e 5 e Menitor
/-fﬁperatlng range w 5 200 ::j = &
- Low [/ ] ‘ o T r T v * 142 g m
Set nt il ¢ ¢ 100 110 120 130 140 150 160 170 3 '
o : : :
P Elution pH Table 2. Effect of Purity of Load Material on Pool Purity and \
Percent Yield of the HIC Process Column for Pooling Based on 4 -
i Absorbance and PAT for Experiments Performed at Laboratory
First-principles Scale .4—
A280-Based
models Process deswgn space B ‘un:- BAT Pooling
% Load | % Pool > % pool
Run Purity Purity % Yield Purity % Yield
1 62.8 81.3 91.7 91.6 81.9
2 722 85.5 85.6 91.1 838
Secondary Measurements 3 816 95.4 83.1 90.2 87.8
* Rathore et al., 2010, Large Scale Demonstration of a Process Analytical
Open—loop meas. . .. Technology Application in Bioprocessing, Biotechnology Progress, 26(2), 448.
Chromatography (oH. Cond.. etc) First principle model
Load Column ’ ’ (soft-sensor)
Raw Mat., resin PAT MALS (for HMW) Mass Transport in Column
| de; de; 3265 13
PAT Method 2: B = g D g b6 el
<———— On-line quality estimate (%HMW) First principles model for Mase Transport in Bead
controlling %HMW species -
Controlled 9 P Oepi 104 _ p (52% " Eaﬁ‘p.:‘)
Pt

attribute (e.g.,

%HMW)
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CONCLUSIONS

In silico first principles modeling:

Is an instrumental tool for rapid process design and knowledge-based
manufacturing

enables an efficient use of experimental efforts
enables a richer characterization of the robust design space

can enable next-generation process monitoring and control
applications

Augmented with PAT, sensors and in silico models offer
advanced process performance management capabilities

Artificial Intelligence and Machine Learning-based in silico
models are emerging, offering unique opportunities in
bio/pharma

Every patient, every time
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