

4th PQRI/FDA Conference on Advancing Product Quality:



Patient-Centric Product Design, Drug Development, and Manufacturing

## In Vitro Release and Q3 Measurements for Semisolid Drug Products

#### Flavian Ștefan Rădulescu, Dalia Simona Miron

University of Medicine and Pharmacy Carol Davila, Bucharest, Faculty Of Pharmacy, Biopharmaceutics Department / Center for Drug Sciences





## Outline

- Brief introduction
- Historical perspective of the IVR methodology
- Current role of IVR. SUPAC-SS and beyond
- Validation of IVR methods
- Microstructural assessment of topical semisolids
- Role of IVR and rheological tests in TCS classification
- IVR in comparative assessment of formulations with composition or manufacturing differences
- Added value of IVR for Q3 assessment
- Conclusion



## **Brief introduction Complexity of topical semisolid formulations**

| Drug<br>(API)                                                                                                                                              | Impact                                |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|
| Drug - <mark>Drug product</mark><br>(API and excipients)                                                                                                   | State of<br>aggregation.<br>Stability | Quality<br>Site of |
| Drug - Drug Product - <u>Microstructure</u><br>(API and excipients in specific arrangement)                                                                | Mechanism of release                  | drug<br>action     |
| Drug - Drug Product - Microstructure - <u>Container</u><br>(API and excipients in specific arrangement and dose)                                           | Dosing                                | Efficacy           |
| Drug - Drug Product - Microstructure - Container -<br><u>Application</u><br>(API and excipients in specific arrangement and dose, as<br>applied onto skin) | Dose applied and<br>in vivo delivery  | Safety             |

## Historical perspective of the in vitro release methodology



#### From 1990's:

- development of methodology based on vertical diffusion cells;
- hydrocortisone 1% cream proposed for performance verification;
- comparative assessment of marketed products;
- reports on rank order relationship between the dermatopharmacokinetic. pharmacodynamic and IVR characteristics for marketed creams.

**1997:** Postapproval Changes: Chemistry. Manufacturing. and Controls; In Vitro Release Testing and In Vivo Bioequivalence Documentation (SUPAC-SS guidance): use of IVR for assessment of moderate (level 2) changes.

**1998:** Topical Dermatological Drug Product NDAs and ANDAs - In Vivo Bioavailability. Bioequivalence. In Vitro Release. and Associated Studies (draft guidance): development of lower strengths / screening of more extensive changes.

**2013**: USP chapter <1724> Semisolid drug products-performance tests: general approaches and cell models.

**2016:** draft guidance on acyclovir 5% creams (US-FDA).

2018: qualification and validation of IVR, acyclovir 5% cream (Tiffner KI et al).



### **Current role of in vitro release tests**

| <b>Q1</b>     | Qualitative equivalence                                                                                                                           | Same components                                                                                                                                                                                     | In some instances.                                                                                       |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| <b>Q2</b>     | Quantitative equivalence<br>(±5%; US-FDA)                                                                                                         | Same components<br>Same quantities                                                                                                                                                                  | subject to patent pending.<br>Q1 & Q2 =/≠ Q3!                                                            |  |  |
| Q3<br>/<br>Q4 | (Micro) Structure similarity<br>Methods and means of<br>application                                                                               | Same arrangement<br>Similar (device)                                                                                                                                                                | IVRT<br>Rheological behaviour<br>Globule / particle size<br>Crystal habit. density<br>Flow / deformation |  |  |
| PE            | Pharmaceutical equivalence<br>EMA (2018):<br>Equivalence with respect to<br>quality: Extended PE concept<br>Relevant data,<br>Relevant comparator | Same: -Drug<br>-Strength / Concentration<br>-Dosage form (Complexity)<br>-Route (methods and means?)<br>Comparable ( <i>adequate</i> ) labeling<br>Meet compendial & other applicable requirements. |                                                                                                          |  |  |
| TE            | Therapeutic equivalence                                                                                                                           | TE = PE + BE                                                                                                                                                                                        |                                                                                                          |  |  |



## **Current role of in vitro release tests SUPAC-SS and beyond (1)**

-performance test reflecting release rate of drug through layers of semisolids;
-high (pseudo-infinite) dose applied;
-use of inert membranes and media providing sink conditions;
-no significant changes of the formulation expected during tests;
-steady state release rates are compared.

#### **Advantages**

-reliable and reproducible;

-simple, but potentially reflecting the combined influence of several factors controlling the release (vehicle, particle / droplet size, dissolution and / or partition within heterogenous system etc.)

#### Limitations

-inertness of support membrane not sensitive to active excipients;
-not informative of the interactions between formulation and skin;
-unrestricted diffusion has no in vivo correspondent.



## **Current role of in vitro release tests SUPAC-SS and beyond (2)**

### **A. Current applications**

- **1.** Development of generics. in selection of the optimal formulation candidate;
- **2.** Screening defined changes in composition / manufacturing process or scale-up;
- 3. Comparative assessment with RLD when in vitro option available;
- 4. Stability studies;
- 5. Selection of representative batch of RLD.

### **B.** Other (potential) applications

- 1. Characterization of microstructural similarity (relationship IVR Q3);
- **2.** Batch-to-batch consistency (EMA draft guideline, 2018).

Relevance of IVR comparison depends upon the similarity of composition.



### Validation of IVR method (1)

| Development                                                         | Validation (qualifications and controls)                                                                                                                                                            |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cell design<br>Temperature and hydrodynamics                        | Qualification                                                                                                                                                                                       |  |
| Receptor media<br>Membrane<br>Pre-treatment of membrane<br>Sampling | Solubility (sink), stability<br>Inertness and compatibility                                                                                                                                         |  |
| Quantitation<br>Data analysis                                       | Analytical method validation<br>Linearity, range, precision.<br>Reproducibility, recovery, mass balance,<br>dose depletion, discrimination sensitivity,<br>specificity and selectivity. Robustness. |  |

US-FDA Acyclovir 5% cream draft guidance (revised Dec 2016).



## Validation of IVR method (2)



## Microstructural assessment of topical semisolids (1)

Rheological testing protocols including a variety of evaluations:

- Oscillatory tests (strain / stress, frequency);
- Rotational tests;
- Axial tests.

(Viscosity evaluation, part of routine QC, wide specifications).

### Appropriate design of test and evaluation of the results. considering:

- temperature, relevant for storage conditions or site of application;
- thickness of the layer of semisolid formulation in vivo conditions;
- changes in composition and microstructure during and after administration.

### **Reflective (directly or indirectly) of:**

- type and intensity of internal interactions;
- response to shearing forces (before and during the application);
- stability (temperature sweep / swing test).



## Microstructural assessment of topical semisolids (2)

### Indications available:

- draft guidance documents (product specific or general);
- available reports (expert meetings);
- compendial chapters (USP, EP) or ISO documents.

#### **Product variables:**

- complexity composition, microstructure;
- packing (semisolids available as tubes of various sizes);
- application device (methods and means of administration);
- changes in time (within shelf life).

Adaption of testing parameters to product (non-Newtonian) characteristics. No general approach for assessing similarity in comparative assessment. Useful in understanding differences in performance (in vitro / in vivo).



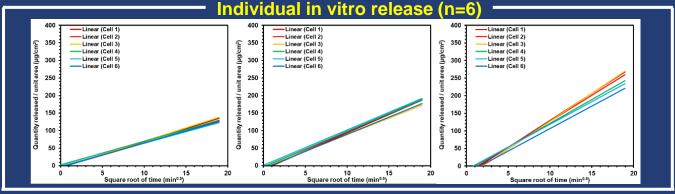
## Role of in vitro release and rheological tests in TCS classification

Comparative assessment based qualitative and quantitative composition and IVR.

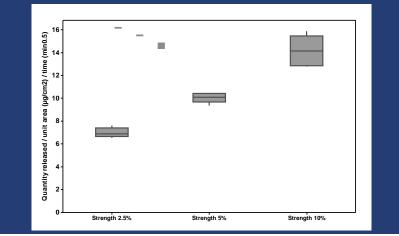
**IVR similarity:** identification of Q1 and Q2 differences and associated risks, considering:

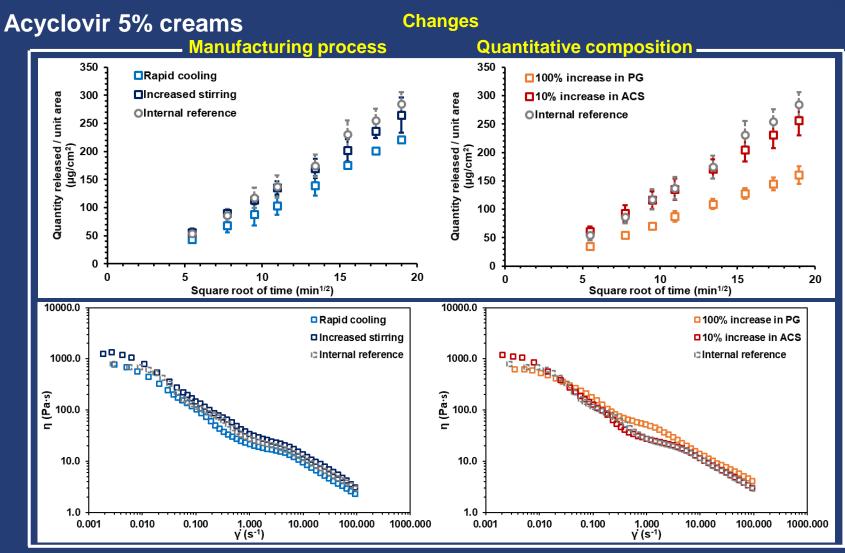
**limitations of IVR** (dose, membrane, sink); **complexity of the microstructure (additional test)**; **impact on the skin permeability.** 

### **Evaluation of non-similarities:**


functionality of excipients, percentage and amount applied, contribution to depth, rate and extent of penetration.

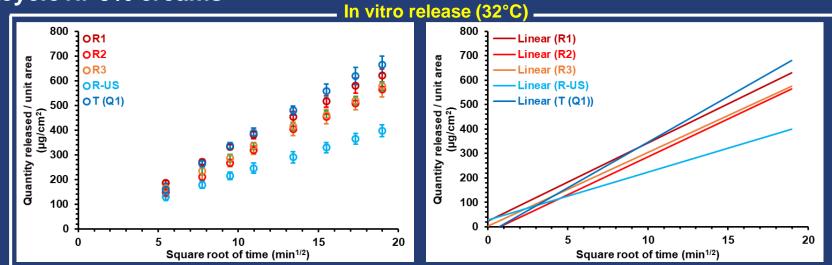
**IVR differences:** in vivo BE studies, independent of Q1 and Q2 similarity.





Acyclovir 5% creams

- Solubility of acyclovir in ethanol 30%: 2.74 ± 0.04 mg/mL (32°C).
- Recoveries at 6, 60, 120 µg/mL: 97.18 to 107.25%.
- Strength discrimination (2.5%, 5%, 10%):

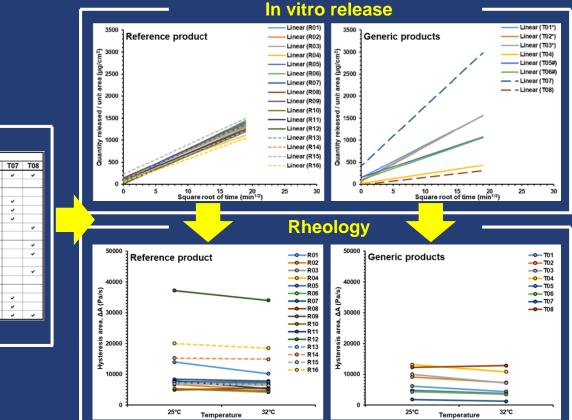



Strength - in vitro release rate relation





ACS – cetosearyl alcohol; PG – propylene glycol.





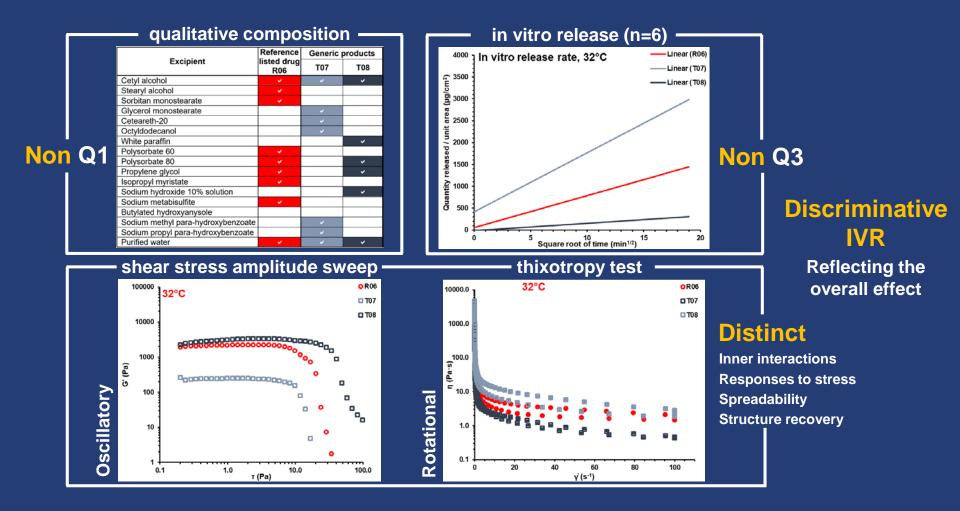

Shear stress amplitude sweep (32°C) 10000.0 -----1000.0 100.0 G' (Pa) 10.0 oR1 oR2 1.0 **oR**3 oR-US o T (Q1) 0.1 1.0 10.0 100.0 т (Ра)

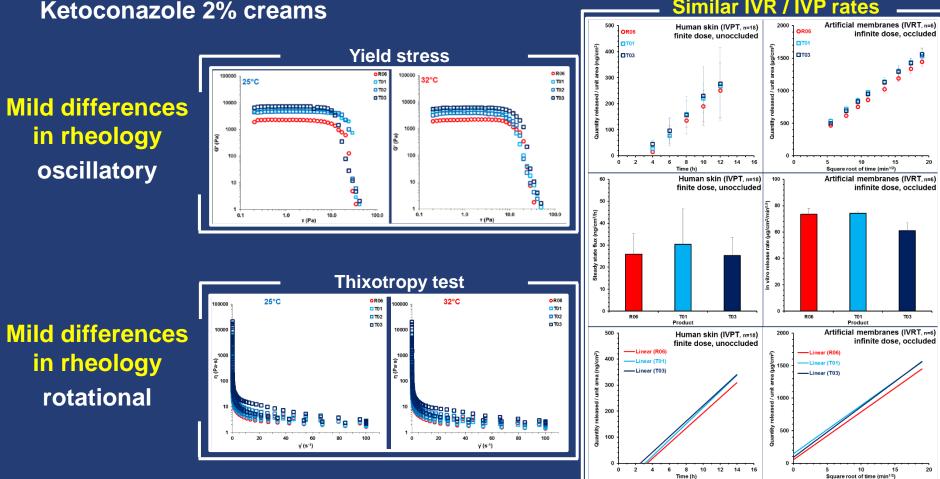


#### Ketoconazole 2% creams



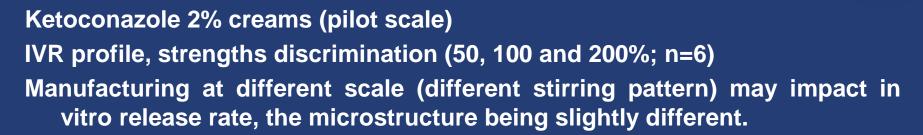
#### Qualitative composition

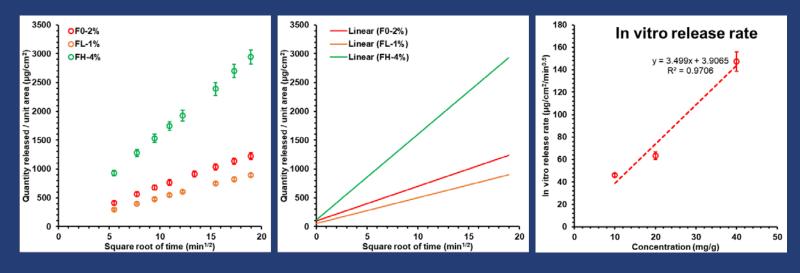

| Excipient                          | Reference   | Generic products |      |      |     |      |      |     |     |
|------------------------------------|-------------|------------------|------|------|-----|------|------|-----|-----|
| Excipient                          | listed drug | T01*             | T02* | T03* | T04 | T05* | T06" | T07 | T08 |
| Cetyl alcohol                      | ~           | ~                | ~    | ~    | ~   | *    | *    | ~   | ~   |
| Stearyl alcohol                    | ~           | ~                | ~    | ~    | ~   | ~    | ~    |     |     |
| Sorbitan monostearate              | ~           | ~                | ~    | ~    | ~   | ~    | ~    |     |     |
| Glycerol monostearate              |             |                  |      |      |     |      |      | ~   |     |
| Ceteareth-20                       |             |                  |      |      |     |      |      | ~   |     |
| Octyldodecanol                     |             |                  |      |      |     |      |      | ~   |     |
| White paraffin                     |             |                  |      |      |     |      |      |     | ~   |
| Polysorbate 60                     | ~           | ~                | ~    | ~    | ~   | ~    | ~    |     |     |
| Polysorbate 80                     | ~           | ~                | ~    | ~    | ~   | ~    | ~    |     | ~   |
| Propylene glycol                   | ~           | ~                | ~    | ~    | ~   | ~    | ~    |     | ~   |
| Isopropyl myristate                | ~           | ~                | ~    | ~    | ~   | ~    | ~    |     |     |
| Sodium hydroxide 10% solution      |             |                  |      |      |     |      |      |     | ~   |
| Sodium metabisulfite               | ~           | ~                | ~    | ~    |     | ~    | ~    |     |     |
| Butylated hydroxyanysole           |             |                  |      |      | ~   |      |      |     |     |
| Sodium methyl para-hydroxybenzoate |             |                  |      |      |     |      |      | ~   |     |
| Sodium propyl para-hydroxybenzoate |             |                  |      |      |     |      |      | ~   |     |
| Purified water                     | ~           | ~                | ~    | ~    | ~   | ~    | ~    | ~   | ~   |


## Differences in age (site of manufacturing)

- \* Q1, Q2 similarity;
- # Q1 similarity (no information on quantitative composition available




#### Ketoconazole 2% creams





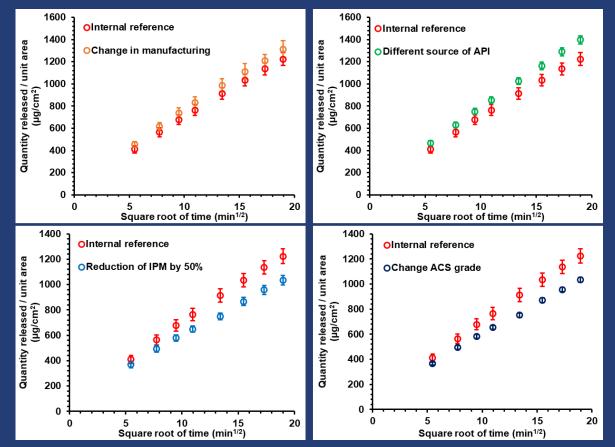

Similar IVR / IVP rates







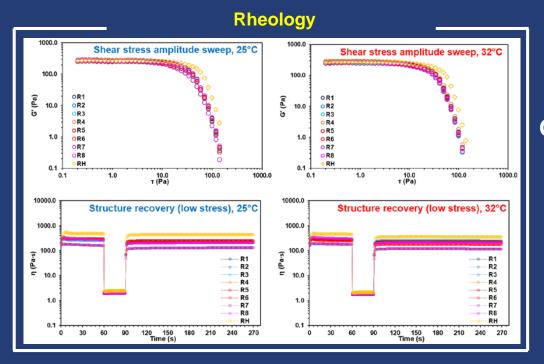
#### Note:

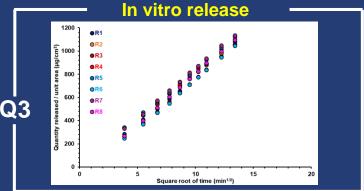

Lower strength used for strength discrimination may not have the same state of aggregation as target and higher strength (distinct IVR rate - strength relation).



Ketoconazole 2% creams (pilot scale)

Formulations prepared by controlled changes in manufacturing process or composition.


First stage in selection of candidates for in vivo study (TCS validation).




ACS – cetosearyl alcohol; IPM – isopropyl myristate; API – active pharmaceutical ingredient.

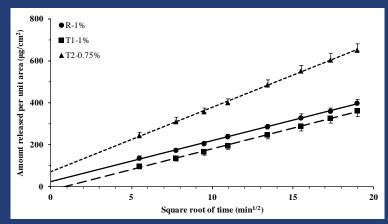


### **Drug product X**



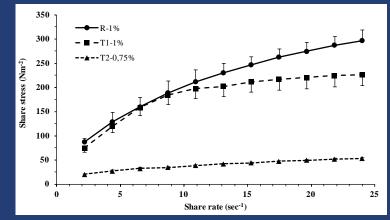


#### Q1, Q2, Q3 products


RH, higher strength of RLD;

R7, use of applicator.

No significant changes in microstructure for the squeezed dose.

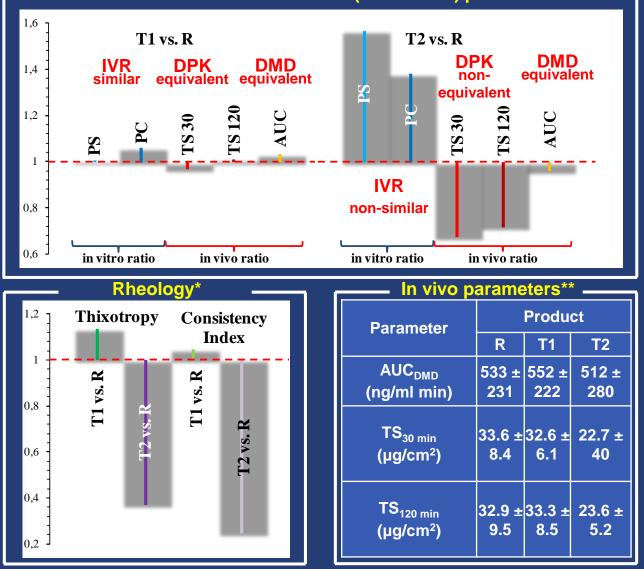

Similar in vitro release (n=6, stage 1).





In vitro release parameters.

| Parameter                                             | Product           |                 |                   |  |
|-------------------------------------------------------|-------------------|-----------------|-------------------|--|
|                                                       | R                 | T1              | T2                |  |
| Release rate<br>(µg/cm²/min <sup>0.5</sup> )          | 19.52 ±<br>0.8    | 19.65 ±<br>1.31 | 30.63 ± 1.05      |  |
| Cumulative amount<br>released after six<br>hours (µg) | 704.64<br>± 30.84 |                 | 1150.8 ±<br>49.14 |  |
| Correlation<br>coefficient                            | >0.99             |                 |                   |  |




Rheological parameters

| Parameter                   | Product |        |       |  |
|-----------------------------|---------|--------|-------|--|
|                             | R       | T1     | T2    |  |
| Flow consistency index, m   | 58.85   | 61.74  | 14.47 |  |
| Flow behavior<br>index, n   | 0.50    | 0.44   | 0.41  |  |
| Correlation<br>coefficient  | >0.99   |        |       |  |
| Thixotropy area<br>(Pa/sec) | 202.86  | 230.44 | 74.94 |  |



— Ratio of In vitro release\* – In vivo (DPK / DMD) parameters\*\*



\*Miron DS et al, 2014; \*\*Garcia-Ortiz P et al, 2011



### Added value of IVR

- IVR is a comparative, steady state release measurement performed in welldefined conditions.
- IVR is a good indicator of the combined influence of composition and microstructural characteristics.
- IVR depends on the degree of similarity of composition (Q1, Q2), the arrangement of the components and their interactions.
- IVR provides an objective measurement of similarity.
- Adequate interpretation of IVR requires details on role, type and quantities of excipients, criteria used by TCS.
- **IVR** may be **combined with other in vitro methodologies** when complexity of the dosage form and of the in vivo delivery process are high.
- IVR is not directly reflecting the transformation of the product which occurs onto the skin.
- **IVR** is **not directly reflecting** the **changes in skin permeability** resulting from interactions with **excipients**.
- However, **IVR non-similarity** indicates risks of non-equivalent in vivo performance.

### Conclusions

- IVR reflects Q3.
- Tailoring the in vitro approach to drug, drug product, microstructure and dosing conditions is essential.
- Combined methodologies (aggregate weight of evidence / extended pharmaceutical equivalence) are recommended by an encouraging number of draft guidance and current version of EMA draft guidance (2018).
- In vitro release tests are powerful tools in quality assessment and comparative performance testing for semisolid dosage forms.
- IVR results provide an objective way of assessing similarity.
- TCS is under validation using three model drugs, emphasizing on IVRT as main approach for Q3 similarity assessment.
- The adequate design and interpretation of the in vitro comparative assessment should consider the complexity of the dosage form.

## Acknowledgements

Part of this work was supported by a grant from Product Quality Research Institute.



### **THANK YOU FOR YOUR ATENTION!**