Modelling aspects related to inhaled medicines Per Bäckman, PhD Co-Chair of PQRI BTC iBCS Working Group

The following presentation includes the personal views of the presenter and does not necessarily represent the official views of Emmace Consulting.

The mention of commercial products (including software), their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by Emmace Consulting.

 \sim

Outline

OIntroduction to computer-based models

Model applications and general design principles
 Applications within the PQRI iBCS project

- General outline and validation of approach (work in progress)
- Oldentifying classifiers Sensitivity Modelling (work in progress)
- OGeneral Applications to Inhaled Drug Product Development

• Example: Advair Batch-to-Batch Variability

○Conclusions – opportunities and challenges

Outline

Introduction to computer-based models • Model applications and general design principles OApplications within the PQRI iBCS project • General outline and validation of approach (work in progress) Oldentifying classifiers - Sensitivity Modelling (work in progress) OGeneral Applications to Inhaled Drug Product Development OExample: Advair Batch-to-Batch Variability OConclusions – opportunities and challenges

Why do We Need Computer Based Models?

Modified from Olsson and Bäckman, Respiratory Drug delivery 2014

OUnderstanding

Multiple, kinetically competing processed sensitive to changes in drug and product attributes

Compound and product design

Now: Product/compound specific (e.g. design for BE) Future: Generalized rules (*e.g.* iBCS)

When do We Need Computer Based Models?

Examples of Computer-Based Models (Q4-2017)

Bäckman et al, Eur J Pharm Sci. 2018 Feb 15;113:41-52

OMechanistic deposition and pulmonary absorption:

- AstraZeneca LungSIM (proprietary, presented at DDL 2017)
- OMerck (proprietary, presented at DDL 2016)
- SimulationsPlus Gastroplus ADRM (commercially available)
- Mimetikos Preludium (commercially available)

Design Principles

From: Bäckman et al, Eur J Pharm Sci. 2018 Feb 15;113:41-52

OProcess Flow: 1.Deposition 2.Non-absorptive Clearance 3. Dissolution 4. Permeation into Tissue 5. Perfusion into System 6.Systemic disposition* **○***non-mechanistic

The Model: A System of Differential Equations

OMathematical description (generalized and simplified examples):

Deposition Probability:
Non-Absorptive Clearance:
Dissolution:
Permeation into Tissue:
Perfusion into System*:

$$\begin{split} \eta_{g} &= 1 - (1 - \eta_{g}^{i})(1 - \eta_{g}^{s})(1 - \eta_{g}^{d}) \\ dn_{ET}/dt &\propto k_{MCC} \times n_{BB} \\ dn_{sol}/dt &\propto D/h \times A_{s} \times (C_{s} - C_{ALF}) \\ dn_{tis}/dt &\propto P_{eff} \times A_{epi} \times (C_{ALF} - C_{epi}) \\ dn_{sys}/dt &\propto Q \times V_{tis} \times R_{bp}/F_{up} \times [C_{tis} - C_{sys}] \end{split}$$

○*Systemic disposition is described by a non-mechanistic compartmental PK model based on IV PK data

Critical Product Attributes: Deposition, Dissolution Rate, Permeation & Tissue Interaction

The Mimetikos PreludiumTM Model

Modified from Olsson and Backman, RDD18

Schematic of the simulation Model

Model Inputs

- Dose Deposition (1D): APSD, DD, Inhalation flow...
- \circ Dissolution: VMD, D, C_s,...
- \circ Permeation: P_{eff}
- Tissue interaction: logD, pK_a, R_{bp}...
- Systemic compartmental PK model: IV data

Outline

OIntroduction to computer-based models • Model applications and general design principles • Applications within the PQRI iBCS project • General outline and validation of approach (work in progress) Oldentifying classifiers - Sensitivity Modelling (work in progress) OGeneral Applications to Inhaled Drug Product Development OExample: Advair Batch-to-Batch Variability OConclusions – opportunities and challenges

Predicting Exposure After Oral Inhalation of the Selective Glucocorticoid Receptor Modulator, AZD5423, Based on Dose, Deposition Pattern, and Mechanistic Modeling of Pulmonary Disposition

Validation – The AZD 5423 Example

Clinical data and model inputs from Bäckman, Tehler and Olsson, JAMP 2017

Compound Properties

TABLE 1. PHYSICOCHEMICAL PROPERTIES OF AZD5423

Property (units)

Molecular weight (g/mol)	487.5
Lipophilicity, logD	5.7
Permeability, P_{app} (cm/s $\times 10^6$)	10.4
Solubility in PBS, pH 7,4 (μ M)	0.6
Solubility in FASSIFv2 (μ M)	9
Protein binding, F_{up} (%)	0.02
Blood–plasma partitioning, R _{bp}	0.58
Density (g/mL)	1.4
рКа	Neutral
Particle Size, MMD (GSD), Study 1 $(\mu m)^a$	1.3 (3.2)
Particle Size, MMD (GSD), Study 2 $(\mu m)^a$	3.1 (1.8)

BCS 2-type compound Low Solubility

- High Permeability
- In vitro and In vivo data available for 6 products
 - O 2 Nebulizers (Spira & iNeb)
 - 2 Dry Powder Inhalers
 - 2 Particle sizes (disso)
- Useful for testing model capability

Validation – The AZD 5423 Example

Pharmacokinetic data and model inputs from Bäckman, Tehler and Olsson, JAMP 2017

Impact of deposition pattern

- Nebulized suspensions with: A: same VMD and different deposition (inhalation flow); and
 B: different VMD and same deposition (inhalation flow)
- > Can the models simulate these changes to exposure based on first principles?

Impact of dissolution rate (VMD)

Validation – Gastroplus ADRM[™] (w AZ deposition)

Pharmacokinetic data and model inputs from Bäckman, Tehler and Olsson, JAMP 2017

Impact of deposition pattern

 \circ General changes to AUC C_{max} and t_{max} predicted, some absolute errors identified

Validation – Mimetikos Preludium™

Pharmacokinetic data and model inputs from Bäckman, Tehler and Olsson, JAMP 2017

Impact of deposition pattern

Validation – Simulations of AUC & C_{max}

Pharmacokinetic data and model inputs from Bäckman, Tehler and Olsson, JAMP 2017

 \circ All three models give reasonable simulations of AUC_{inf}, AUC_t and C_{max} for the 6 cohorts evaluated

For AZD5423, models are consistent and predictive of changes due to differences in dose, deposition pattern and dissolution rate

Validation – Summing Up (for a BCS 2-type drug)

work in progress

- All three models are capable of:
 - Simulating the overall shape of the plasma profile and how it qualitatively responds to changes in dose deposition and dissolution rate
 - Predicting absolute values of AUC_{inf} , AUC_t and C_{max} for the 6 cohorts evaluated within ± 5-30% (model and product dependent)
- Suggests that computer based simulations based on first principles are capable of clinically meaningful predictions of local and systemic PK for this type of drug
- Also, that these models are capable of simulating clinically meaningful changes in local and systemic PK in response to changes in critical product attributes such as dose, deposition and dissolution

The iBCS Process Map

Sensitivity Modelling – Outline

(work in progress)

Sensitivity modelling by varying:

- Doses (0.43µg-43 mg)
- Solubility (0.1-10µg/mL)
- Permeability(1x10-4 to 1x10-6 cm/s)

Understanding the rate limiting processes at different conditions and in different regions of the lungs

Sensitivity Modelling – Test Grid & Drug Attributes

(work in progress)

Hypothetical drug – F	Properties
Mw	500 g/mol
logP	0
Diffusivity	3 E-4 cm ² /min
Solubility	0.1-10 μg/mL
рКа	Neutral
Peff	1E-4 – 1 E-6 cm/s
Rbp	1
Кр	1
Fup	1
VMD	1-3µm
GSD	2
Dose	0.43-4300 ug
CL	80L/h
Vc	10L

Do (V _{ASL} =4.3 mL)	Peff (cm/s)	Solubility (ug/mL)	VMD (GSD) (um)	Pulmonary Region	Output Parameters
0.1	1E-4	0.1	1 (2)	AI	T1/2 in Lumen
1	1E-5	1	2 (2)	Bb	Peak Flux into Tissue
10	1E-6	10	3 (2)		Cmax
100	1E-7	100	4 (2)		AUC
1 000					
10 000					

Sensitivity Modelling – Respiratory Region (AI)

Doses (DD) ranging from 0.43 ug to 43 mg; Solubility (Cs) 0.1-10 ug/mL; Permeability (Peff) 1E-4 to 1E-6 cm/s

1000000 C_s=10ug/mL 100000 $P_{eff}=1E-4cm/s$ 10000 Cmax (pg/mL) P_{eff}=1E-5cm/s P_{eff}=1E-6cm/s 1000 100 $C_s = 1 ug/mL^{-10}$ C_=0.1ug/mL 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 Do

Impact of P_{eff} and C_s on C_{max}

Unpublished Data, iBCS PQRI Working Group

> At lower doses, (Do's <100), C_{max} is dissolution-rate driven and directly correlated to total specific surface area (dose)

At higher doses, (Do's >100), C_{max} becomes permeability-rate driven and uncorrelated to dose (saturation)

Sensitivity Modelling – Respiratory Region (AI)

Doses (DD) ranging from 0.43 ug to 43 mg; Solubility (Cs) 0.1-10 ug/mL; Permeability (Peff) 1E-4 to 1E-6 cm/s

Impact of P_{eff} and C_s on AUC_{inf}

At all doses, AUC_{inf} is directly correlated to dose (F=1) and independent of C_s and P_{eff}

Therefore, at same dose, neither
 changes in P_{eff}, nor in C_s impacts on
 AUC_{inf}

Unpublished Data, iBCS PQRI Working Group

23

Sensitivity Modelling – Respiratory Region (AI)

Doses (DD) ranging from 0.43 ug to 43 mg; Solubility (Cs) 0.1-10 ug/mL; Permeability (Peff) 1E-4 to 1E-6 cm/s

- The ratio of C_{max}/AUC_{inf} is used to assess equivalence of relative absorption rates
- The ratio of C_{max}/AUC_{inf} changes as the rate limiting step changes from dissolution to permeation

22

Unpublished Data, iBCS PQRI Working Group

Sensitivity Modelling – Actual Products?

- Respiratory region dose
 numbers for actual products
 fall roughly within the
 investigated range
- A downward tendency can be observed as Do's increase despite differences in tissue interactions

Sensitivity Modelling – Summing Up

- Sensitivity modelling suggests that computer based models may help identify rate limiting steps and critical attributes, as well break-points where they change
- Results also indicate that parameter sensitivity will change with region and dose for a given compound
- Today, sensitivity modelling could support understanding the clinical impact of changes in product attributes – possibly aiding the definition of specification limits on such attributes
- Tomorrow, sensitivity modelling could help define general classifiers to identify development risks for product classes – an iBCS

Outline

OIntroduction to computer-based models • Model applications and general design principles • Applications within the PQRI iBCS project • General outline and validation of approach (work in progress) Oldentifying classifiers - Sensitivity Modelling (work in progress) • General Applications to Inhaled Drug Product Development • Example: Advair Batch-to-Batch Variability OConclusions – opportunities and challenges

Plasma Profiles of FP(A) and SX(B)

Figure 1. Mean plasma concentration vs. time profiles for: A) fluticasone propionate (100µg) and B) salmeterol xinafoate (50 µg) from three batches (Batch 1 replicated twice) following inhalation to healthy volunteers using the Advair Diskus 100/50. (Data from Reference 16, Figure 1).

Adapted from: Bäckman and Olsson, RDD Asia 2018 *Burmeister Getz et al, CPT, 2016 Significant batch to batch
 variability observed for
 Advair Diskus 100/50*

Age difference 1 yr –
 Impact on FPM and/or
 Dissolution?

29

Batch Variability - Advair Diskus 100/50 ™, (FP/SX)

Simulated Impact of ± 15% variation in FPM*

Figure 2. Simulated plasma-concentration vs time profiles for: A) fluticasone propionate and B) salmeterol xinafoate, illustrating the impact of a ± 15% variation in fine particle mass (FPM).

Adapted from: Bäckman and Olsson, RDD Asia 2018 *Mimetikos Preludium™ Good correlation

between simulated and
 observed profiles
 Simulated variation in
 C_{max} and AUC
 corresponds to
 observed variation

Batch Variability - Advair Diskus 100/50 ™, (FP/SX)

Simulated Impact of ± 15% variation in VMD*

Figure 4. Simulated plasma-concentration vs time profiles for: A) fluticasone propionate and B) salmeterol xinafoate, illustrating the impact of ± 15% variation in volume mean diameter (VMD) of the fine particle mass (FPM).

Adapted from: Bäckman and Olsson, RDD Asia 2018 *Mimetikos Preludium™ Simulated variability

impacts on C_{max} , not

- AUC
- Observed batch to
 batch variability in AUC
 is likely a result of
 variations in FPM, not
 in dissolution

Outline

OIntroduction to computer-based models • Model applications and general design principles • Applications within the PQRI iBCS project • General outline and validation of approach (work in progress) Oldentifying classifiers - Sensitivity Modelling (work in progress) OGeneral Applications to Inhaled Drug Product Development OExample: Advair Batch-to-Batch Variability Oconclusions – opportunities and challenges

Conclusions

- The validation studies, as well as other published examples suggests that computer based models based on first principles are capable of clinically meaningful simulations of systemic exposure in response to changes in critical product attributes
- Sensitivity modelling suggests that computer based models may provide insights into the rate limiting steps as a function of critical product attributes and phys chem properties.
- We hypothesize that this will enable definition of drug and/or product classes with distinct development risks
- Today, computer-based modelling and compound classifiers could support development of inhaled drugs and products, helping developers define specifications to meet demands on lung targeting, lung retention, and therapeutic equivalence with the minimum amount of studies
- Tomorrow, these tools could perhaps influence the regulatory landscape for inhaled products?

Acknowledgements

The PQRI BTC Working Group

- Jayne Hastedt (JDP Pharma co-chair)
- Per Bäckman (Emmace co-chair)
- Tony Cabal (Merck)
- Andy Clark (Aerogen Pharma)
- Carsten Ehrhardt (Trinity College Dublin)
- Ben Forbes (King's College London)
- Tony Hickey (USP/RTI)
- Guenther Hochhaus (University of Florida)
- Wenlei Jiang (FDA)
- Stavros Kassinos (University of Cyprus)
- Phil Kuehl (Lovelace Biomedical)

- Jens Markus Borghardt (Boehringer Ingelheim)
- David Prime (GSK)
- Yoen Ju Son (Merck)
- Erika Stippler (USP)
- Simon Teague (GSK)
- Ulrika Tehler (Astra Zeneca)
- Jeff Weers (Respira Therapeutics)
- Jen Wylie (Merck)

The PQRI BTC

- Lee Nagao
- Filippos Kesisoglou
- Mehran Yazdanian
- Dede Godstrey
- Erika Stippler
- Wenlei Jiang

The AAPS Inhalation Focus Group

Backups

The Respiratory Tract

Hastedt et al AAPS Open 2016

	generatio	n	d (cm)	I (cm)	number	cross- section area (cm2)	cartilage	epithelial cell type
	trachea	0	1.8	12.0	1	2.54		
ne	huonahi	1	1.22	4.8	2	2.33	33 open rings	
ting zo	bronem	2	0.83	1.9	4	2.13		columnar
		3	0.56	0.8	8	2.00	plates	ciliated
uct	bronchioles	4	0.45	1.3	16	2.48		
pue		5	0.35	1.07	32	3.11		
S	terminal	¥	\downarrow	\downarrow	↓	¥	1	
	bronchioles	16	0.06	0.17	6x10 ⁴	180.0		cuboidal
		17						cuboidal
ne	respiratory	18	+	¥	\downarrow	+		
ry zo	bronchioles	19	0.05	0.10	5x10 ⁵	10 ³	absent	to alveolar
ato		20						
piră	alveolar ducts	21						alveolar
lsə.		22	¥	*	¥	¥		
-	alveolar sacs	23	0.03	0.03	8x10 ⁶	104		
Mucus/Surfactant								
Base Smoot Fibre	Mucus/Surfactant				Cartlage	Capilary	\$	
Base Smoot Fibre	Mucus/Surfactant				Cartilage	Capilary	Si Control Epinetal Cell	Discant → Control (Epone) Col

Heterogeneous organ:

- Conducting Airways:
 - Small surface
 - T2 epithelium
 - Mucociliary clearance
- Alveolar interstitial region
 - Large surface
 - T1 epithelium
 - Particle clearance by alveolar macrophages

Aerosol Deposition

Courtesy of Bo Olsson (Lung Deposition 2016.ppt)

Impaction

(particle size)² velocity density

Sedimentation

(particle size)² residence time (tube diameter)⁻¹

Diffusion

(particle size)^{- ½} (residence time)^½ (tube diameter)^½

- Large particles (>10 μm) end up i mouth throat due to high impaction
- Smaller particles (~3 μm) penetrate into lung
- Even smaller particles (~0.5 μm) may be exhaled
- All numbers influenced by inhalation manoeuvre and lung physiology

Impact of Disease - FP in Accuhaler[™] vs Bud in Turbuhaler[™]

Plasma Profiles HV and Moderate Asthma

Figure 1 Mean (SE) plasma concentrations of (A) fluticasone propionate and (B) budesonide in healthy subjects and subjects with moderately severe asthma.

Adapted from: Harrison and Tattersfield (Thorax, 2003)

Moderate asthma
 reduced systemic
 exposure (AUC) for FP
 but not for Bud

Why?

Impact of Disease - FP in Accuhaler[™] vs Bud in Turbuhaler[™]

Impact of large airway constriction? (FP(A); Bud(B))

Simulated deposition pattern suggests:

- Same lung dose
- Disease driven

Bb

shift from AI to

Figure 1. Predicted deposition patterns for fluticasone propionate administered via Accuhaler[™] (A) and budesonide administered via Turbuhaler[®] (B) in healthy volunteers (black) and asthma patients (gray). ET = extra-thoracic, BB = large bronchi, bb = small bronchi, AI = alveolar interstitium.

Adapted from: Bäckman and Olsson, RDD, 2016

Impact of Disease - FP in Accuhaler[™] vs Bud in Turbuhaler[™]

Mechanistic Simulations¹

Adapted from: Bäckman and Olsson, RDD, 2016, ¹ Gastroplus [™], ver 9.0, Simulations Plus Inc. Lancaster CA, US

Reasonable correlations
 between simulated and
 observed C_{max} and AUC
 Low FP bioavailability in
 Bb results in significant
 AUC reduction