

Advanced Analytical Techniques for Characterizing Amorphous Solid Dispersions

Eric J. Munson

Department of Industrial and Physical Pharmacy Purdue University

I am a partial owner of Kansas Analytical Services, a company that provides solid-state NMR services to the pharmaceutical industry.

The results presented here are from my academic work at the University of Kansas and the University of Kentucky, and no data from Kansas Analytical Services is presented here.

Outline

. Motivation

- a. Why Amorphous Solid Dispersions (ASDs)?
- b. Current challenges
- II. Crystallinity Detection
- III. Drug-Polymer Interactions
- IV. Drug-Polymer Homogeneity
- V. Drug-Polymer Stability
- VI. Protein Stability
- VII. Conclusions and Acknowledgements

Organic Process Research & Development, 2000 4,413-417 Properties

Impact of Solid-State Form

Amorphous Solid Dispersions **PURDUE**

Article

Twenty years later...

Cite This: Mol. Pharmaceutics 2018, 15, 1870–1877

Manufacturing Amorphous Solid Dispersions with a Tailored Amount of Crystallized API for Biopharmaceutical Testing

Frank Theil,[®] Johanna Milsmann, Sankaran Anantharaman, and Holger van Lishaut*

AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany

How has the perspective changed?

Amorphous Solid Dispersions **PURDU**

Challenges with Current API Delivery

- Drug solubility remains a challenge
- ASDs remain a viable method for increasing solubility for BCS II (IV)
- Hydrogen bonds and van der Waals forces stabilize API in polymer matrices
- Potential for crystallization always exists
- Drug loading of ASD has significant impact – compromise between physical stability and reduced pill burden

Amorphous Solid Dispersions **PURDUE**

Crystallinity in an ASD

- Usually a CQA
- <u>Source</u> manufacturing or conversion
- <u>Manufacturing</u> "easily" detected and controlled
- <u>Conversion</u> depends upon stability in matrix T_g, molecular mobility
- Where is the boundary???
- Impact on bioavailability???

Amorphous Solid Dispersions **PURDUE**

Crystallinity in an ASD

- <u>Detecting</u> is it there?
- <u>Avoiding</u> drug-polymer interactions, phase separation
- <u>API Loading</u> how much is too much?
- <u>Conversion</u> what matters? T_g, polymer, water, drug loading
- Expansion of concepts to proteins

Amorphous Solid Dispersions – P Advanced Techniques for Crystallinity Detection

Traditional methods (partial list)

- Polarized Light Microscopy
- Differential Scanning Calorimetry
- Powder X-ray Diffraction

Advanced Methods

- Transmission Raman Spectroscopy
- Synchrotron X-ray Diffraction
- Second Harmonic Generation
- Solid-State NMR

Amorphous Solid Dispersions – PU Two-Dimensional X-ray Diffractometry

Article

Compression-Induced Crystallization of Amorphous Indomethacin in Tablets: Characterization of Spatial Heterogeneity by Two-Dimensional X-ray Diffractometry

Naveen K. Thakral,^{†,‡} Sarat Mohapatra,[‡] Gregory A. Stephenson,[†] and Raj Suryanarayanan^{*,‡}

Data courtesy of Raj Suryanarayanan

Amorphous Solid Dispersions – Abraxane Crystal Detection Using Second Harmonic Genertion

SHG

White spots indicate crystals

Crystalline material is present in freeze-dried Abraxane® powder - but is it the drug or is it an excipient?

Schmitt et al. Mol. Pharmaceutics. 2015 12(7):2378-2383.

Data courtesy of Lynne Taylor

Outline

. Motivation

- a. Why Amorphous Solid Dispersions (ASDs)?
- b. Current challenges
- II. Crystallinity Detection
- III. Drug-Polymer Interactions
- IV. Drug-Polymer Homogeneity
- V. Drug-Polymer Stability
- VI. Protein Stability
- VII. Conclusions and Acknowledgements

Model System

Indomethacin H-bond donor and acceptor

PVP H-bond acceptor

PVP/VA H-bond acceptor

Hydrogen Bonding of Amorphous Indomethacin

- 179 ppm = cyclic dimer
- 176 ppm = disordered chains/rings
- 172 ppm = carboxylic acid-amide complex
- 170 ppm = free

IMC Carboxylic Acid in Amorphous Solid Dispersions

Chemical Shift (ppm)	Species	Peak Area (%)	Linewidth (Hz)	
179.3 ± 0.006	cyclic dimer	58.5 ± 0.5	216 ± 0.8	
176.3 ± 0.02	carboxylic acid chain	15.2 ± 0.4	303 ± 5	
172.4 ± 0.004	carboxylic acid-amide	18.9 ± 0.4	212 ± 0.6	
170.4 ± 0.05	free carboxylic acid	7.5 ± 0.3	225 ± 5	

Hydrogen-Bonding Interactions in IMC Amorphous Solid Dispersions

Summary:

- PVP disrupted IMC cyclic dimers; with 40% (wt) of PVP present, no cyclic dimers could be detected.
- PVP/VA also disrupted the IMC self interactions in a similar fashion as PVP, but less effectively.

Amorphous Solid Dispersions – Model Systems

Felodipine (FEL)

PVP

PVP/VA

PVAc

Compound	MW (g/mol)	T _m (ºC)	T _g (⁰C)	H- bond Acceptors/Donors
Felodipine	384.25	144.4	46.2	Both
PVP	~25000		170.0	Acceptor
PVP/VA	~45000- 47000		109.0	Acceptor
PVAc	~100,000		44.4	Acceptor

PVP: Polyvinylpyrrolidone; PVP/VA: Polyvinylpyrrolidone/vinylacetate; PVAc: Polyvinylacetate

Carbonyl Carbon in Amorphous FEL

¹³C CPMAS NMR Spectra of Carbonyl Carbons of FEL – PVP, PVP/VA, PVA

Outline

. Motivation

- a. Why Amorphous Solid Dispersions (ASDs)?
- b. Current challenges
- II. Crystallinity Detection
- III. Drug-Polymer Interactions
- IV. Drug-Polymer Homogeneity
- V. Drug-Polymer Stability
- VI. Protein Stability
- VII. Conclusions and Acknowledgements

Miscibility Determination Using **PURDUE** Solid-State NMR Spectroscopy

T1 values Τ1ρ values		Number of Phases		
Sama	Somo	1		
Same	Same	(domain size < 2-5nm)		
Somo	Difforant	2		
Same	Different	(domain size 5-20 nm)		
Different	Difforant	2		
Dinerent	Different	(domain size > 20-50 nm)		

¹H T₁ Differential Between Drug and Polymers

Plots of ¹H T₁ differential between FEL and PVP-VA in ASDs as a function of polymer weight fraction. The error bar represents 95% confidence interval associated with the fit. Dashed line represents the zero.

¹H T_{1p} Differential Between Drug and Polymers

Plots of ${}^{1}\text{HT}_{1\rho}$ differential between FEL and PVP-VA in ASDs as a function of polymer weight fraction. The error bar represents 95% confidence interval associated with the fit. Dashed line represents the zero.

How does H-Bonding Influence Miscibility?

Differences of SSNMR $^{1}HT_{1\rho}$ Relaxation Times

Indomethacin H-bond donor and acceptor

Indomethacin methyl ester H-bond acceptor

Outline

. Motivation

- a. Why Amorphous Solid Dispersions (ASDs)?
- b. Current challenges
- II. Crystallinity Detection
- III. Drug-Polymer Interactions
- IV. Drug-Polymer Homogeneity
- V. Drug-Polymer Stability
- VI. Protein Stability
- VII. Conclusions and Acknowledgements

Physical Stability of 70:30 IMC : PVP K25

Storage Conditions

70:30 IMC : PVP K25										
	5	0 °C dr	у	40 °C 57%RH			40 °C 75%RH			
	Crystallize ?	T _g (°C)	T _{storage} -T _g (°C)	Crystallize ?	T _g (°C)	T _{storage} -T _g (°C)	Crystallize ?	T _g (°C)	T _{storage} -T _ç (°C)	g
Time 0	No	62.4	-12.4	No	62.4	-22.4	No	62.4	-22.4	
1 wk	No	71.7	-21.7	No	52.7	-12.7	No	41.4	-1.4	
2 wks	No	71.4	-21.4	No	52.8	-12.8	No	41.1	-1.1	
1 mnth	No	70.7	-20.7	No	51.8	-11.8	Yes	41.3	-1.3	
2 mths	No	73.0	-23.0	No	50.4	-10.4	Yes	39.9	0.1	
6 mths	No	74.3	-24.3	No	52.0	-12.0	Yes	43.7	-3.7	
										-

- 70:30 IMC:PVP K25 only crystallized at 40 ° C and 75% RH
- Is the temperature (above T_g), the water, or both the cause for the crystallization?

Physical Stability of 70:30 IMC: PVP K12 and PVP/VA at 70 °C

College of Pharmacy

Storage Conditions

	IMC : PVP K12 Oven at 70 °C					IMC : PVP/	VA Over	n at 70 °C)
Ratio	T _{storage} -T _g	0 wk	1 wk	20 wks	Ratio	T _{storage} -T _g	0 wk	1 wk	28 wks
50-50	-12.0 °C	No	No	No	50-50	- 4.5 °C	No	No	No
60-40	- 6.0 °C	No	No	No	60-40	+ 1.5 °C	No	No	No
70-30	-0.5 °C	No	No	No	70-30	+ 7.0 °C	No	No	No
80-20	+ 8.5 °C	No	No	No	80-20	+ 12.5 °C	No	Yes	Yes
90-10	+ 15.5 °C	No	Yes	Yes	90-10	+ 18.0 °C	No	Yes	Yes

- IMC crystallizes into different polymorph based on polymer (PVP/VA: Alpha, PVP k12: Gamma)
- Crystallization only occurs at both high temperatures (> 10 °C above T_g) and at high drug concentrations
- Which is the bigger cause for the crystallization, T_g or polymer concentration?

Physical Stability of 70:30 IMC: **PURDUE** PVP K12 at 60, 70, and 80 °C

IMC : PVP K12 Oven at 80 °C					IMC : PVP	K12 0	Oven at 70) °C	
Ratio	T _{storage} -T _g	0 wk	1 wk	6 wks	Ratio	T _{storage} -T _g	0 wk	1 wk	6 wks
50-50	- 0.0 °C	No	No	No	50-50	- 10.0 °C	No	No	No
60-40	+ 6.5 °C	No	No	No	60-40	- 3.6 °C	No	No	No
70-29	+ 13.6 °C	No	No	No	70-30	+ 3.6 °C	No	No	No
80/20	+ 18.2 °C	No	No	YES	80-20	+ 8.2 °C	No	No	No
90-10	+ 28.2 °C	No	YES	YES	90-10	+ 18.2 °C	No	YES	YES
IMC : PVP K12 Oven at 60 °C						CI	API:Po	olymer = 7:3	}
Ratio	T _{storage} -T _g	0 wk	1 wk	6 wks			7	Γ	
50-50	- 20.0 °C	No	No	No) _ 0		N CO
60-40	- 13.6 °C	No	No	No			N 	+ ∗∤	*
70-30	- 6.4°C	No	No	No		0	(он	l	'n
	••••								
8 -20	- <u>1.9 °C</u>	No	No	No			- M		

- Crystallization occurs at high drug concentrations, but lower drug loading can retard crystallization at high temperatures (> 10 °C above T_g)
- Which is the bigger cause for the inhibition of crystallization, T_q or polymer concentration? <u>Polymer concentration!</u>

Physical Stability of IMC: PVP **PURDUE** K12 at 50, 60, 70, 80, and 90 °C

- Crystallization occurs at high drug concentrations, but lower drug loading can retard crystallization at high temperatures (> 10 °C above T_g)
- Which is the bigger cause for the inhibition of crystallization, T_q or polymer concentration? <u>Polymer concentration!</u>

Physical Stability of IMC: PVP **PURDUE** K12 at 50, 60, 70, 80, and 90 °C

---70:30 **----**75:25 **---**80:20 **---**85:15 **---**90:10

- Crystallization occurs at high drug concentrations, but lower drug loading can retard crystallization at high temperatures (> 10 °C above T_q)
- Which is the bigger cause for the inhibition of crystallization, T_a or polymer concentration? <u>Polymer concentration!</u>

Outline

. Motivation

- a. Why Amorphous Solid Dispersions (ASDs)?
- b. Current challenges
- II. Crystallinity Detection
- III. Drug-Polymer Interactions
- IV. Drug-Polymer Homogeneity
- V. Drug-Polymer Stability
- VI. Protein Stability
- VII. Conclusions and Acknowledgements

Stabilizing Protein Therapeutics PURDU Using Freeze Drying or Lyophilization

- Many challenges for formulation of proteins due to complex structure:
 - Many sites for degradation
 - Aggregation

Steps in Freeze Drying

Freeze Drying Process

Protein Phase Separation

- Looked at two proteins in six different sugars to determine phase separation after lyophilization was performed.
 - Proteins: IgG and LDH (20% protein)
 - Excipients:
 - Trehalose
 - Inulin (2 kDa, 5 kDa)
 - Dextran (2 kDa, 5 kDa, 70 kDa)
- Systems were one of the three cases based on protein and excipient:
 - Intimately mixed (Same ${}^{1}HT_{1}$ and ${}^{1}HT_{1rho}$)
 - Partially miscible (Common ¹H T₁, different ¹H T_{1rho})
 - Phase separated (Different ¹H T₁ and ¹H T_{1rho})

Mike Pikal and Maartin Mensink, UConn

Protein Phase Separation

Protein – Sugar Sample	Protein ¹ H T ₁ (s)	Sugar ¹ H T ₁ (s)	Protein ¹ H T _{1rho} (ms)	Sugar ¹ H T _{1rho} (ms)
IgG – Trehalose	4.6 <u>+</u> 0.5	4.3 <u>+</u> 0.5	9.0 <u>+</u> 0.7	10.4 <u>+</u> 0.5
lgG – Inulin 2 kDa	2.2 <u>+</u> 0.3	2.1 <u>+</u> 0.3	7.8 <u>+</u> 0.5	6.8 <u>+</u> 0.3
IgG – Inulin 5 kDa	1.7 <u>+</u> 0.2	1.8 <u>+</u> 0.3	9.3 <u>+</u> 0.6	6.3 <u>+</u> 0.3
lgG – Dextran 1.5 kDa	3.7 <u>+</u> 0.5	3.5 <u>+</u> 0. 4	17.0 <u>+</u> 1.0	21.9 <u>+</u> 0.6
lgG – Dextran 5 kDa	1.5 <u>+</u> 0.3	2.2 <u>+</u> 0.3	12.3 <u>+</u> 0.9	22.8 <u>+</u> 0.5
lgG – Dextran 70 kDa	1.5 <u>+</u> 0.2	2.9 <u>+</u> 0.4	10.0 <u>+</u> 0.6	17.4 <u>+</u> 0.5
LDH – Trehalose	1.7 <u>+</u> 0.2	2.0 <u>+</u> 0.2	10.1 <u>+</u> 0.7	11.3 <u>+</u> 0.3
LDH – Inulin 2 kDa	1.6 <u>+</u> 0.2	1.9 <u>+</u> 0.2	9.7 <u>+</u> 0.7	7.2 <u>+</u> 0.3
LDH – Inulin 5 kDa	0.90 <u>+</u> 0.10	1.4 <u>+</u> 0.2	10.5 <u>+</u> 1.0	7.6 <u>+</u> 0.4
LDH – Dextran 1.5 kDa	2.4 <u>+</u> 0.3	2.4 <u>+</u> 0.2	15.1 <u>+</u> 1.6	22.7 <u>+</u> 0.7
LDH – Dextran 5 kDa	1.9 <u>+</u> 0.2	1.8 <u>+</u> 0.2	14.3 <u>+</u> 0.7	23.5 <u>+</u> 0.8
LDH – Dextran 70 kDa	1.9 <u>+</u> 0.2	1.8 <u>+</u> 0.2	15.0 <u>+</u> 1.6	26.0 <u>+</u> 1.1

Protein Phase Separation and Stability

Mike Pikal and Maartin Mensink, UConn

Conclusions

- Challenges facing ASDs include crystal detection (manufacturing and stability), stabilizing using hydrogen bonding, high API loading
- Advanced techniques for crystal detection include Raman, Synchrotron X-ray, SHG, and SSNMR
- Drug stability in polymeric systems depends extensively on water content, drug loading, and drug/polymer interactions
- Similar approaches can be used to evaluate protein stability

Acknowledgments

Current and Former Students

0	Julie Calarian	Dr. Sean Delaney	DI. Sleve Rheihei	Den Neison
	Iulia Calaban	Dr. Soon Dolonov	Dr. Stave Phainer	Pon Noloon
0	Kanika Sarpal	Ashley Lay	Travis Jarrells	Dr. Matthew Nethercott
0	Donia Arthur	Xioada Yuan	Nick Winquist	Sarah Pyszczynski
0	Eric Gorman	Dr. Dewey Barich	Robert Berendt	Elodie Dempah
0	Joe Lubach	Loren Schieber	Diana Sperger	Robert Berendt

- Center for Pharmaceutical Development Industrial Advisory Board Geoff Zhang
- Ken Qian and Marc Cicerone, NIST (and collaborators)
- Mike Pikal and Maarten Mensink UConn
- Funding
 - NSF (CHE 0416214, 0750467, 1710453)
 - University of Kansas
 Madison and Lila Self Fellowships
 - University of Kentucky
 - NSF Center for Pharmaceutical Development (CPD) (IIP 1063879, 1540011)