Challenges and considerations in the development and validation of *in vitro* drug release testing for intravaginal rings

Karl Malcolm

SCHOOL OF

In vitro release testing methods for drug-releasing vaginal rings

Peter Boyd^a, Bruce Variano^b, Patrick Spence^c, Clare F. McCoy^a,

Diarmaid J. Murphy^a, Yahya Bashi^a, R. Karl Malcolm*^a

^a School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK;

^b Population Council, One Dag Hammarskjold Plaza, New York, NY 10017, USA

^c International Partnership for Microbicides, Silver Spring, Maryland 20910, USA

*Corresponding author. Tel: +44 (0)28 9097 2319; E-mail: k.malcolm@qub.ac.uk

Manuscript to be submitted to the International Journal of Pharmaceutics

Content

- O Vaginal rings
 - O The human vagina
 - O Methods for *in vitro* release testing
 - O In vitro-in vivo correlations (IVIVC)
 - O Challenges

Vaginal rings

http://www.google.com/patents/US3545439

[52]	U.S. Cl			
	3/36, 128/130, 128/270, 260/75			
[51]	Int. Cl A61m 7/00			
[50]	Field of Search 128/130,			
131, 128, 129, 334, 270, 156, 268, 260, 1; 424/15,				
	27, 28, 264/337; 260/75, 858; 3/36			
[56] References Cited				
UNITED STATES PATENTS				
2.017	596 1/1936 Hoffman			

Abstract. An improved resident annual device for intravaginal placement and retention as required and formed of a compatible nonabsorbable polymeric substance such as an organopolysiloxane, nylon, natural or synthetic rubber, dacron, tefion, polyurethane and polyethylene and containing an effective amount of a medicament which is capable of passage through the drug-permeable polymeric material. The device is useful to provide a readily inserted, readily retained and readily removable source of continued medication for sustained beneficial effects in female mammals, human and animal.

figure 2
figure 3
GORDON W. DUNCAN BY Edward J. Dw. Utty.

'Nuala with the Hula'

A famous Belfast landmark

Vaginal rings Drug molecules

McBride et al., Vaginal rings with exposed cores for sustained delivery of the HIV CCR5 T inhibitor 5P12-RANTES, Journal of Controlled Release 298 (2019) 1–11

Molecular weight (g/mol)

Vaginal rings Regulatory considerations

- O Single entity combination products / as defined in 21 CFR
 3.2(e)
- O Drug + device
- O "For drug delivery vaginal rings, primary mode of action relates to the 'drug' component

Vaginal rings Drug product specification tests

11

Product quality tests	Product performance tests
Appearance and Description	In vitro release testing
Identification	
Assay (drug content)	
Impurities / Related substances / Degradation products	
Uniformity of dosage unit (ring weight)	
Content uniformity	
Microbial limits	

Vaginal rings Mechanical testing

Mechanical testing methods for drug-releasing vaginal rings

Clare F. McCoy^a, Bronagh G. Millar^c, Diarmaid J. Murphy^a, Wendy Blanda^b, Bashir Hansraj^b, Brid Devlin^b, R. Karl Malcolm^a, Peter Boyd^{a,*}

^a School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK

^b International Partnership for Microbicides, Silver Spring, MD 20910, USA

^c School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, UK

ARTICLE INFO

ABSTRACT

Keywords: ISO ASTM method Compression test Tensile test Intravaginal ring Vaginal rings (VRs) are currently marketed for contraceptive or hormone regulation purposes, and investigationally, have been widely reported for delivery of antiretrovirals to reduce HIV transmission. To date, there is no national or international standard for the mechanical testing and minimum performance characteristics of any VR based products. Here, we describe a series of mechanical tests examining the durometer hardness, static and dynamic compression response, tensile properties and twist resistance of vaginal rings. The tests were conducted on currently marketed VRs and a number of the International Partnership for Microbicides' (IPM) investigational VR formulations. With wider application in the field, the tests described herein could form the basis for a more standardised approach to the mechanical testing of VRs.

International Journal of Pharmaceutics 559 (2019) 182–191

Content

- O Vaginal rings
- O The human vagina
 - O Methods for *in vitro* release testing
 - O In vitro-in vivo correlations
 - O Challenges

The human vagina

Mucosa	Surface area (cm ²)	
oral	200	
gastrointestinal	350,000	
skin	20,000	
vaginal	90	

Barnhart et al., Baseline dimensions of the human vagina, Human Reproduction 2006;21:1618–22

The human vagina

ORIGINAL RESEARCH ARTICLE

A Vaginal Fluid Simulant

Derek H. Owen* and David F. Katz*†

A fluid medium was developed to simulate the fluid produced in the human vagina. The composition of the medium was based on an extensive review of the literature on constituents of human vaginal secretions. In choosing the ingredients for this medium, the goal was to emphasize properties that influence interactions of vaginal fluid with topical contraceptive, prophylactic, or therapeutic products. Among these properties, pH and osmolarity play a dominant role in physicochemical processes that govern drug release and distribution. CONTRACEPTION 1999;59: 91–95 © 1999 Elsevier Science Inc. All rights reserved.

KEY WORDS: vaginal, fluid, secretions, simulant, composition

Introduction

15

hen therapeutic, contraceptive or prophylactic formulations are applied to the vagina, they encounter a variety of fluids with widely varying physical and chemical properties. native material originating within the vagina. Vaginal fluid has many properties distinct from those of semen and mucus, and interactions of formulations with this material may be physicochemically different from those with semen or mucus.

Our laboratory has been studying how the deployment and delivery of contraceptive and prophylactic compounds are affected by the properties of the delivery vehicle and its interactions with the surrounding fluids. It was found that the osmolarity and pH of the delivery vehicle and the surrounding fluid are important factors in modulating drug delivery.³ Osmolarity and pH are also important in determining the rheological properties of many commonly used delivery gels. It is therefore useful to employ a vaginal fluid simulant with physical and chemical properties, particularly pH and osmolarity, that model those of native vaginal fluid. The formula for this simulant was developed after an exhaustive review of the literature.

The human vagina

- O Composition of vaginal fluid
 - salts, proteins, carbohydrates, low molecular weight organic compounds, lactic acid, acetic acid, glycerol, urea, glucose
- O Quantity of vaginal fluid
 - 0.5–0.75 g fluid present at any one time
 - 6 g /day production
- O Vaginal pH
 - 3.5 4.5 in healthy, non-menstruating, premenopausal women
 - >4.5 in healthy, post-menopausal women

The human vagina Vaginal fluid simulant

Component	Concentration (g/L)		
NaCl	3.51		
KOH	1.40		
Ca(OH)2	0.222		
bovine serum albumin	0.018		A divet to
lactic acid	2.00		→ Adjust to pH 4.2
acetic acid	1.00		
glycerol	0.16		
urea	0.4		
glucose	5.0		

The human vagina Drug absorption

Content

- O Vaginal rings
- O The human vagina
- O Methods for *in vitro* release testing
 - O In vitro-in vivo correlations
 - O Challenges

In vitro release testing Factors: Drug / drug product

- ring type (e.g. matrix, reservoir, pod, insert, exposed core, etc.)
- overall ring dimensions
- core length (for reservoir rings)
- membrane thickness (for reservoir rings)
- drug type
- drug solubility in the ring polymer
- drug diffusivity in the ring polymer
- initial drug loading (for matrix rings)
- drug particle size distribution

- salt form of drug
- polymorphic form of drug
- co-formulation / drug-drug interactions
- polymer type and grade
- cure temperature and time (for silicone elastomer)
- molding/extrusion temperature (thermoplastics)
- formulation excipients
- drug photosensitivity
- ring storage / storage conditions

In vitro release testing Factors: Testing parameters

- type of test (shake-flask vs. flowthrough)
- type of agitation (orbital vs. linear shaking)
- composition of release medium
- pH of release medium
- volume of release medium
- sink vs non-sink conditions
- sampling frequency and interval

- frequency of medium replacement
- rate of stirring
- rate and diameter of orbital shaking
- temperature of release medium / prewarming of medium
- position of ring in flask (suspended or lying flat)
- type of flask / shape of flask (affects fluid dynamics around the ring)

In vitro release testing

- O Ring types
- O Release testing equipment
- O Release medium type
- O Release medium volume
- O Shaking speeds
- O Release medium sampling schedules

In vitro release testing Ring type / Matrix rings

- solid crystalline drug dispersed throughout ring volume
- manufacture via one-step injection molding process
- Fertiring®, Progering®, dapivirine ring

Malcolm et al., Microbicide vaginal rings: Technological challenges and clinical development, Advanced Drug Delivery Reviews 103 (2016) 33–56

In vitro release testing Ring type / Matrix rings

In vitro release testing Ring type / Matrix rings / Metronidazole

27

In vitro release testing Matrix rings / Release kinetics

*

Classical Higuchi

$$\frac{W_t}{A} = \sqrt{DC_s(2C_0 - C_s)t}$$

Simplified Higuchi

$$\frac{M_t}{A} = \sqrt{DC_s(2C_0)t}$$

General form $M_t = k\sqrt{t}$

 M_t – cumulative release A – ring surface area D – drug diffusion coefficient C_s – drug solubility in polymer C_0 – initial drug conc. in ring t – time

* assumes $C_0 \gg C_s$

Siepmann & Peppas, Higuchi equation: Derivation, applications, use and misuse, International Journal of Pharmaceutics 418 (2011) 6–12

In vitro release testing Ring type / Reservoir rings

- Estring[®], Nuvaring[®], Femring[®], Ornibel[®]
- solid or dissolved drug dispersed throughout core only
- multi-step injection molding for silicone elastomer rings
- co-extrusion for thermoplastic rings

In vitro release testing Ring type / Reservoir rings

In vitro release testing Ring type / Reservoir rings / MPTs

Boyd et al., International Journal of Pharmaceutics 511 (2016) 619 –629

31

In vitro release testing Reservoir rings / Release kinetics

Crank's equation	$M_t = \frac{(2\pi C_s DL)}{\ln b/a} t$
Chien's equation	$M_t = \frac{(C_s DA)}{h}t$
General form	$M_t = kt$

 M_t – cumulative release A - ring surface area D - drug diffusion coefficient $C_{\rm s}$ – drug solubility in polymer L – length of core *b* – cross-sectional radius ring a - cross-sectional radius coreh – sheath thickness t-time

In vitro release testing Release testing equipment

Fig. 2. Different type of shaking incubators commonly used for in vitro release testing of vaginal rings. A – a benchtop shaking incubator; B – a floorstanding top-opening orbital shaking incubator; C – stackable orbital shaking incubators; D – flasks containing suspended rings, and stored in an orbital shaking incubator.

In vitro release testing Release medium type

Ring	Medium
Fertiring®	isotonic saline
Estring®	0.9% saline
Progering®	isotonic saline
Nuvaring®	water
Femring®	0.9% saline
Ornibel®	pH 4.2 acetate buffer +0.05% Solutol HS 15
Annovera®	water
dapivirine	1:1 isopropanol/water

In vitro release testing Release medium volume

Ring	Medium	Volume (mL)
Fertiring®	isotonic saline	250
Estring®	0.9% saline	250
Progering®	isotonic saline	250
Nuvaring®	water	200
Femring®	0.9% saline	500
Ornibel®	pH 4.2 acetate buffer +0.05% Solutol HS 15	100
Annovera®	water	400
Dapivirine	1:1 isopropanol/water	100

In vitro release testing Shaking speeds

Ring	Medium	Volume (mL)	Shaking speed
Fertiring®	isotonic saline	250	NA
Estring®	0.9% saline	250	60/130 rpm
Progering®	isotonic saline	250	NA
Nuvaring®	water	200	750 rpm
Femring®	0.9% saline	500	NA
Ornibel®	pH 4.2 acetate buffer +0.05% Solutol HS 15	100	60 rpm
Annovera®	water	400	100 opm
Dapivirine	1:1 isopropanol/water	100	60 rpm

In vitro release testing Flat vs. suspended rings

Fig. 3. Sealed glass flasks for in vitro release testing of drug-releasing vaginal rings. A – ring allowed to rest on bottom of flask containing 100 mL of release medium. B – ring suspended by a nylon thread in glass flask containing 200 mL release medium. The nylon string can be seen in the space between the release medium and the blue screw-top lid.

Content

- O Vaginal rings
- O The human vagina
- O Methods for in vitro release testing
- O In vitro-in vivo correlations
- O Challenges

In vitro-in vivo correlation Scarcity of IVIVCs for vaginal rings

- Require validation step based on clinical studies, which are expensive and typically require multiple developed formulations showing different release profiles in multiple media
- O Other drug dosage forms are generally more lucrative than vaginal rings → financial incentive to develop IVIVC (e.g. line extensions)
- O Non-compendial methods / poor water solubility / long duration of release / non-biorelevant release media

IVIVC Matrix rings

Content

- O Vaginal rings
- O The human vagina
- O Methods for *in vitro* release testing
- O In vitro-in vivo correlations

Challenges

- O No compendial apparatus or methods
- O Considerable variation in *in vitro* release testing methods
- O Difficulty in selection of release medium for very poorly water soluble drugs
- O Difficulty in developing in vitro release methods to match in vivo performance
- O Few reports describing accelerated *in vitro* release test methods

Thank you for listening!

Appendix 1 Detailed information on marketed vaginal

ring products

Progering®	Indication	contraceptive for brownen	eastfeeding
Silesia / Andromaco 1998 / 2010 (Chile, Peru, LA)	Material & dimensions	silicone elastomer 56 mm x 9.0 mm matrix-type	
	Duration of use	3 months continuou	s use
PROGESTERONA 1 anillo vaginal contraceptivo	API C	Name Loading Release rate Serum levels	progesterone 2074 mg ~10mg/day 10–20 nmol/L
			50

Fertiring®	Indication	progesterone supple the luteal phase; IVF	
Silesia / Pop. Council 1993 (Chile, Ecuador)	Material & dimensions	silicone elastomer 60 mm x 9.0 mm matrix-type	
Ferting PROGESTERONA 1 g	Duration of use	3 months continuous	s use
1 anillo vaginal	API C	Name Loading	progesterone 1000 mg
frtg		Release rate	~10 mg/day (in vitro)
			51

Indication	•	•	• • •
Material & dimensions	55 mm :	x 9.0 mm; 2.0 n	•
Duration of use	3 montł	ns continuous u	se
ΑΡΙ	OH	Name	17β-estradiol
H	\square	_	2 mg 7.5 μg/day
HO	H		52
	<section-header>Material & dimensions</section-header>	Indicationlocal synMaterial & dimensionssilicone 55 mm x reservoiDuration of use3 monthAPIOH H H H H H H H	Material & dimensionssilicone elastomer (add 55 mm x 9.0 mm; 2.0 m reservoir-typeDuration of use3 months continuous uAPIOH Loading Release rate

Nuvaring®	Indication	hormonal contraception (98–99% ovulation inhibition)
Organon / Merck 2001 (Netherlands, EU, USA)	Material & dimensions	poly(ethylene-co-vinyl acetate) (EVA) 54 mm x 4.0 mm reservoir-type
	Duration of use	21 days continuous use each month
	APIs \downarrow	HNameetonogestrelLoading11.7 mgRelease rate120 μg/dayHNameethinyl estradiolLoading2.7 mgRelease rate15 μg/day

Ornibel [®] / Myring™	Indication	hormonal contraception (98–99% ovulation inhibition	n)
Insud Pharma / Exeltis 2018 (EU)	Material & dimensions	polyurethane sheath and 28 copolymer core / 54 mm x 4 reservoir-type	
	Duration of use	21 days continuous use each month	ו
	APIs	H Loading 11.0	nogestrel mg µg/day
	HO	H Loading 3.47	nyl estradiol ' mg g/day

Femring®	Indication	estrogen replacemended local and systemic s menopause	• • •
Galen / WC / Actavis 2001 (UK) / 2003 (USA)	Material & dimensions	silicone elastomer 56 mm x 7.6 mm; 2 reservoir-type	(condensation cure) .0 mm core
	Duration of use	3 months continuo	us use
	API	OH Name	17β-estradiol-3- acetate
	, ∫ H	Loading	12.4 / 24.8 mg
		H Release rate	50 / 100 µg/day
			55

Annovera®	Indication	hormonal contraceptive	
Population Council 2018	Material & dimensions	silicone elastomer (add. & con 58 mm x 8.4 mm reservoir-type (2 cores)	nd. cure)
Cross-section 8.4 mm	Duration of use	21 days continuous use each month	
NES / EE 3.15 x 14 mm ical adhesive 56 mm - 1	API H H HO H HO H H H H H H H H H H H H H	H Release rate 150 μ	ng g/day vl estradiol ng

Dapivirine	Indication	vaginal microbicide; prevention of sexual transmission of HIV	
IPM 2017 (pending)	Material & dimensions	silicone elastomer (addition cure) 54 mm x 7.6 mm matrix-type	
	Duration of use	28-day continuous use	
		CN Name dapivirine Loading 25 mg Loading 2600–180 Release rate www 2600–180 NH Release rate svF 350–100 µg/day NH Release d in vivo °24 mg 57	ıy
	Ń	N Released in vivo ~4 mg 57	-

The human vagina Histology

Tissue	Type of epithelium
vaginal	stratified squamous, nonkeratinized
ectocervix	stratified squamous, nonkeratinized
endocervix	columnar, single layer

Appendix 2

Conditions and assumptions for use of the Higuchi equations to model drug release from matrix-type vaginal rings.

In vitro release testing Higuchi equation / Conditions

- 1. Drug transport through the ring is rate limiting, whereas drug transport within the vaginal fluid is rapid.
- 2. The vaginal tissue acts like a "perfect sink": The drug concentration in this compartment can be considered to be negligible.
- 3. The initial drug concentration in the ring is much higher than the solubility of the drug in the ring.
- 4. The drug is finely dispersed within the ointment base.
- 5. The drug is initially homogeneously distributed throughout the ring.
- 6. The dissolution of drug particles within the ring is rapid compared to the diffusion of dissolved drug molecules within the ring.
- 7. The diffusion coefficient of the drug within the ring is constant and does not depend on time or the position within the ring.
- 8. The ring does not swell or dissolve during drug release.

Appendix 3 Extra slides

In vitro release testing In vivo Tissue In vitro Fluid Fluid