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ACCELERATING DRUG DEVELOPMENT USING SMALL SCALE, DATA
INTENSIVE, ITERATIVE DESIGN APPROACHES

* Where in the development lifecycle to deploy these tools?
* The experimental element
* The modeling element

e Extending the value: Model Based Product Design



Product Development Lifecycle: Where to apply iterative design
approaches

* Pl Prototyping
 Formulation Prototyping Free to explore formulation

APl phase selection composition and process
* Process selection

Iterative design
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Small Scale, Data Intensive Formulation Development Environment

e \What are the attributes?

 Use small amounts of drug substance What data do we really use to make

formulation decisions?
 Need to be able to generate enough drug

product material to run meaningful analysis (strength vs. pressure)

e Flexibility to accommodate the range of (density vs. pressure)
process technologies and products Friability (elegance vs. #revs)
. Fl
e Data you generate must be actionable v .
Disintegration
Dissolution

Phys/Chem stability
* |deally you also have

e Data acquisition, and embedded context All this as a function of composition and
. . o process
e Automate calculations and visualizations at
the point of data generation Formulation development is a
e Data mining/empirical modeling multivariable, multi objective function

e Fundamental modeling optimization problem



Formulation Screening Center: Smart Throughput Analysis at the 5-50gm batch scale

Capabilities:
Automated Powder Dispensing & Miniaturized Flexible semi-automated tools
Granulation Technology
Facilitate Small Batch Manufacturing Formulation DOE/Optimization studies

Evaluation of Mechanical Properties, Compaction
Performance, & Release Rates

Data Integration Lab, with automated calculations
and report generation

Impact:

Rapid Small Batch Compaction Analysis Maps UV fiber optic probe dissolution Speed & API utilization

Formulation Mechanical Performance: system Automated Enables rapid
Tablet Strength & Disintegration Time prototyping and formulation

A Explore wider composition
optimization

spaces

Increased product
understanding

Systematic characterization
enables cross program
knowledge build




Small Scale Iterative Design
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Iterative Design Cycle from Initial Concept to Lead Formulation
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Solid Oral Drug Project Development Scenario:

e Evaluate Two APl phases

* Free from & Salt form Free Base Solid Oral Drug Product salt
* Evaluation of API attributes Studies Prototype Trees Studies
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With these tools you rapidly make and test alternative formulations

RC/DC
1%MgSt
Hazing
Picking 3 ? 8/32 SRC MRBA 84 tooling, ~200 events
; : Accelerated stability
HSWG FBG High Lube High Lube DEC HSWG
DC RC Capsule &3
)
=
S
E
. Hazing Hazing Low GRN Image
FURIE Picking Picking Strength Size 1 ‘ C}
Low GRN
Strength 0

- 1B

2
wt% SSF

*




Finite Elements Modeling

Model the effects of stress induced from the
compaction process on the microstructure of the
tablet (e.g. density)
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FEM to predict density gradients as a
function of material properties &
tooling geometry

Large simulations that are run on
supercomputers/cloud computers

Finite Element Modeling is a numerical
method that can be used to solve boundary
value problems for partial differential
equations

sSDV1
CAvg: 759)

+9,302e-01
+9,122e-01
+8,942e-01
+8,762e-01
+8.582e-01
+8,402e-01
+8.222e-01
+8.042e-01

+7.1412-01

0 <

Seea: Com asccion



Optimizing the Design of Tablets from Mechanical Properties to Shape

Cup depth drives density
gradients in tablets

Ideal embossing position
dependent upon material

—

100% .
Decreasing cup , =

1]
2
E %
=
e g [ ] g a0% -
X
'E 0.15 ! ’ ] i = X o
] £ x x * A MCC 0.5%Mg!
- * A ¢ 20% -
< - WMCC 1.O%MgSt
i g o1 < MCC 2.0% Mg 0%
ey 316 1.0%MgSt
'g M 16 1%Mgs 0% )
= '] 0. 0.78 a1
sDV1

=4
[=)
&

Relative Density

Embossing center position (mm)

Taking what we have learned and apply to new development products
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Optimizing the Design of Tablets from Mechanical Properties: Embossing

Position
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Smaller features and offset embossing placement reduce surface density
gradients and improve product robustness
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XRCT for exploring internal defects at high compaction speeds _ -

Prosolv

Sample Label Bulk Density ( 10ml Die fill for a Fill density
grad cyl) 300mg tablet (estimated)
1. MK-XXXX | 0.383g/cc 10.5mm 0.401g/cc
PH102
3. MK-XXXX | 0.488g/cc 8.1mm 0.520g/cc
Prosolv

Slower speed compaction shows no cracks in PH102!!!

-—

High speed
compaction
(960mm/sec)

%
MicroCT

images of
tablets after
production —
cracking is
evident!



Full 2D solution with varying density shows that the maximum pressure
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Formulation Screening Center: Smart Throughput Analysis at the 5-50gm batch scale

Capabilities:
Automated Powder Dispensing & Miniaturized Flexible semi-automated tools
Granulation Technology
Facilitate Small Batch Manufacturing Formulation DOE/Optimization studies

Evaluation of Mechanical Properties, Compaction
HME SD WG Performance, & Release Rates

Data Integration Lab, with automated calculations
and report generation

Impact:

Rapid Small Batch Compaction Analysis Maps UV fiber optic probe dissolution Speed & AP utilization

Formulation Mechanical Performance: system Automated Enables rapid
Tablet Strength & Disintegration Time prototyping and formulation

A Explore wider composition
optimization

spaces

Increased product
understanding

Systematic characterization
enables cross program
knowledge build
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Extending The Value: Adding the modeling component

Formulation Predictive Modeling Philosophy:
Advance our skills in Predictive Modeling
e Advanced Analytics &Classical statistics
e Data acquisition systems to support modeling

Create a suite of data driven analytic tools
* Formulation design, risk evaluation, due-diligence assessments,...

Work with modeling in mind
e Future state will have us making a battery of key measurements to directly support
model development/maintenance

Small Scale, Data Intensive, Iterative Design Approaches

Smart Throughput .
Experimentation Modellng

Fundamental
Empirical Modelling Modeling/
Understanding

Rapid Iterative
Design

A

Advanced
Data
Modeling
Expertise
Rapid
Prototyping
Tools
Formulation
Domain
Knowledge

“The real power is in the combination
of expertise in formulation,
characterization, and data modeling”



Formulation Predictive Modeling: Tensile Strength as

a function of formulation composition Compaction Profile is a key to
understanding the strength

potential of a formulation. Itis

Multivariate Characterlzatlop of Neat 'ﬂ_‘PI _(?ompactlon Profiles Prototype Neural Network Model for Compaction Profile Prediction eXperIment run by a”
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Data driven Model of Spray Drying Process and Formulation

PLS weights plot of the multi-Y PLS exploratory model,
PC1 vs. PC2
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Fundamental modeling and simulations R
FEM/FD/ML
Air Pressure Modeling
Sha pe Modeling Full 2D solution with varying density shows that the maximum pressure DenSIty/Stresses
within the tablet occursin the center at the top.
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Model Based Product Design

Initiatializtion

Formulation: Machine . Modeling Engine
Com ostion' learning material M FEM/FD/ML
P Model model
Process parameters Density/Stresses
Shape .
Image parameters
m Drop Testing
Compute new
o : Shape
Optimization Constraints: parameters
Drug Load Stregth/Friability
Image size Optimization Model Outputs
Lube/disintegrent Calculations Phase Change

# components

l Inverse Models
, : i Optimized
Optimal Solution: Machine P )
, learning —~ | Formulation:
Material parameters :
Model Compostion/
Process
&
Shape parameters —
[ e Image




Conclusions

* Value of Iterative product design during product prototyping

 Smart Throughput experimentation provides value throughout the
development cycle

* These tools provide an opportunity to data mining and empirical
model building

* Bridging the gap to fundamental modeling
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