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Outline

Case study I: continuous tablet manufacturing via TSWG
* PAT for process understanding & process modeling
* PAT for process monitoring & control

Case study Il: pharmaceutical suspension manufacturing
* Model based PAT implementation

Case study lll: continuous freeze-drying
 PAT & model based design
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Case study 1 - TSG

Direct compression (DC) — roller compaction (RC) — wet granuation (WG)

= API solid state properties

= API solubility

* APl load (dosage range)

= API flow properties (adhesion/cohesion)
= API| compaction properties

Powder flow

Powder compressibility
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Case study 1 - TSG

Loss-in-weight
powder feeder(s)

Liquid
addition

Modular screw configuration resulting in shear environment changes:
- mixing
- various rate processes of wet granulation

P |_> shaping final granule characteristic distribution
W PAT (size, shape, moisture content, strength,...)



Case study 1 - TSG

" Process understanding is limited

= Mechanistic models:

— Develop mechanistic understanding of the functional role of individual
screw elements on different granulate CQA’s

= Population Balance Modelling (PBM): Mechanistic description of particulate
system undergoing size change mechanisms

= ]1-dimensional PBM: Granule size distribution (GSD) during TSG

= Multi-dimensional PBM: tracking GSD in combination with granule CQA’s
(porosity, moisture distribution, etc.) of each size class
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Case study 1 - TSG

= State-of-the-art modeling methodology: Experimental data only collected at
granulator outlet

— No experimental information about granule formation along length of
granulator barrel

— Difficult/impossible to calibrate PBM adequately

Ill

= Solution: Compartmental “multi-dimensional” PBM

— Granulator considered as series of individual blocks/modules

— Track particle size/porosity/moisture dynamics along length of
granulator barrel

‘ Role of individual blocks can be understood

Zone O Zone 3 Zone 5 Zone 6
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Case study 1 - TSG

1st liquid addition port
2nd liquid addition port
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Case study 1 - TSG

Feeder Level
Liquid
addition
pumps
Granulator
barrel Parsum IPP70
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Process-
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Case study 1 - TSG
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Case study 1 - TSG

New kernel developed based on experimental observations, which can
predict both mono-modal and multi-modal distributions

Breakage not needed in wetting zone = bimodality caused by lack of
aggregatation due to limited liquid (binder) availability
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Case study 1 - TSG

Modeling conclusions:

- Reasonable fits for all zones
- Sound calibration based on unique PAT data; high predictive power

- Fast calculation: ideal for scenario analysis

Future perspectives:

- Development of generic twin-screw granulation model
- Upgrade PBM models allowing the prediction of other granule quality
attributes (such as porosity/density) besides particle size

- Up-scaling/down-scaling

» Through pre-competitive consortium: academia & industry

[|+|E @ Janssenj'




Case study 1 - TSG
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Case study 1 - TSG

SIMULATION
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Outline

Case study I: continuous tablet manufacturing via TSWG
e PAT for process understanding & process modeling
* PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing
* Model based PAT implementation

Case study lll: continuous freeze-drying

 Model based design of innovative pharmaceutical
manufacturing processes
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Case study 1 - TSG
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Case study 1 - TSG

Monitoring of L/S ratio

———gm -
Granulator _

Heated probe tip

NIR instrument:;

SentroPAT FO Vacuum proof in-line implementation possible

(Reflectance)
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Case study 1 - TSG
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Case study 1 - TSG
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Case study 1 - TSG

“The only way to learn something about a system is to disturb it and then observe it."” Kevin bunn

» Dynamic process excitation
Manipulated variable: Liquid addition pump speed

Response variable: Granule L/S ratio
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L/S ratio [Y%ew/w]

Case study 1 - TSG
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Continuous Direct Compression
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Continuous Direct Compression

RAW MATERIAL PROPERTY DATABASE

Material selection

* Excipients: WG + DC filler + Disint. + Binder + Glid. + Lubric.
* APIs: Micronized + fine to dense + granular

= Aim to span wide property range such that model cover properties of new materials

Particle properties
* Particle size distribution 106 properties
* Particle shape quantification i i B

* Surface area
Bulk properties

* Bulk, tapped and true density
* Compressibility

* Electrostatic charge

* Moisture content, sorption and desorption @

* Permeability and fluidization

* Powder flow: (Dynamic) angle of repose, Flow energy,
Flow through an orifice, Ring shear testing
Wall friction

MULTIVARIATE ANALYSIS (PCA)

PAT :



Continuous Direct Compression
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Continuous Direct Compression

3 Process Variables 14 Raw Materials 5 Quality Attributes
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Continuous Direct Compression

3 Process Variables 55 Raw Materials 5 Quality Attributes

Z

— Process optimization

Y

— Required tablet QA's

11x 26 Experiments
286 Experiments

55 RaWw Materials

XT

— Fixed for new compound
— Restrictions possible
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Outline

Case study I: continuous tablet manufacturing via TSWG
* PAT for process understanding & process modeling
* PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing
* Model based PAT implementation

Case study lll: continuous freeze-drying

 Model based design of innovative pharmaceutical
manufacturing processes




Outline

Case study I: continuous tablet manufacturing via TSWG
* PAT for process understanding & process modeling
* PAT for process monitoring & control

Case study Il: pharmaceutical suspension manufacturing
 Model based PAT implementation

Case study lll: continuous freeze-drying

 Model based design of innovative pharmaceutical
manufacturing processes




Model based PAT implementation

CFD model based NIR spectroscopy implementation for in-line assay monitoring of
a pharmaceutical suspension

* High dose (100 mg/mL) suspension

e Manufactured at full scale

FOAM
Approx. 20% of total batch size (Kg)
3-4% lower in assay
Higher variation and low assay

» 150 L compounding vessel
» One-pan process

BULK SUSPENSION
Approx. 80% of total batch size (Kg)
1-2% higher in assay
Lower variation and high assay

» Gradually discharged to a bottle filling system
* Peristaltic flow

filling line



Model based PAT implementation

CFD model based NIR spectroscopy implementation for in-line assay monitoring of
a pharmaceutical suspension
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Model based PAT implementation

CFD model based NIR spectroscopy implementation for in-line assay monitoring of
a pharmaceutical suspension

* Recirculation zone at entrance T-piece
* Flow not yet fully stabilised into laminar flow profile at NIR sensor location
* Solution: extend T-piece to ensure fully developed laminar paraboloidal flow profile
»  Hydrodynamic entry length Ly 1aminar = 0.05 X Re X D X ¢
Re = Reynolds number [ -]
D = diameter circular tube [m]
¢ = safety factor [ - ]

PAT sensor Recirculation

zones

glagnitude
0.1

0.25



Model based PAT implementation

CFD model based NIR spectroscopy implementation for in-line assay monitoring of
a pharmaceutical suspension

* Recirculation zone at entrance T-piece
* Flow not yet fully stabilised into laminar flow profile at NIR sensor location
* Solution: extend T-piece to ensure fully developed laminar paraboloidal flow profile
»  Hydrodynamic entry length Ly jaminar = 0.05 X Re X D X ¢ =0.1643 m = 16.43 cm
Re = Reynolds number = 43.8
D = diameter circular tube = 0.025 m
¢ = safety factor =3

PAT sensor Recirculation

zones

glagnitude
0.1

0.2

0.25
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Model based PAT implementation

CFD model based NIR spectroscopy implementation for in-line assay monitoring of
a pharmaceutical suspension
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Model based PAT implementation

CFD model based NIR spectroscopy implementation for in-line assay monitoring of
a pharmaceutical suspension
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Outline

Case study I: continuous tablet manufacturing via TSWG
* PAT for process understanding & process modeling
* PAT for process monitoring & control

Case study Il: pharmaceutical suspension manufacturing
 Model based PAT implementation

Case study lll: continuous freeze-drying

 Model based design of innovative pharmaceutical
manufacturing processes




Outline

Case study I: continuous tablet manufacturing via TSWG
* PAT for process understanding & process modeling
* PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing
* Model based PAT implementation

Case study Ill: continuous freeze-drying

 Model based design of innovative pharmaceutical
manufacturing processes



Case study 3 — Continuous Freeze-Drying

- large molecules considered key driver of growth in pharma industry

- over 300 FDA and EMA approved biopharmaceutical products
- + 50% freeze-dried

- freeze-drying preferred way of stabilizing biopharmaceutical drug products
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Pharmaceutical Batch Freeze Drying

Al
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low temperature drying process to convert solutions of (heat-) labile
materials into solids having sufficient stability
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Pharmaceutical Batch Freeze Drying

only 2 process settings

30 - - 1180
20 i ~
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5 50 180
-60 - -20
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Process time (min)

==shelf temp ==chamber pressure
Lab scale freeze-dryer w
1. Drying chamber »
- vials to be freeze-dried on shelves .._.'L—)
- shelf temperature is controlled CQA’s freeze-dried product:
- chamber pressure is controlled (i) API state and stability

(ii) residual moisture content
(iii) freeze-dried product cake structure
(iv) reconstitution time

2. Condensor

U PAT



Pharmaceutical Batch Freeze Drying

1. High production cost
- large equipment with high operational, maintenance and energy costs
- high standards of cleanliness and sterility . I AR

2. Time-consuming (> 7 days)

3. Up-scaling — re-optimisition and validation

4. Impaired quality

BACK WALL
FRONT DOOR

- freezing step is uncontrolled
- unefficient & uneven heat transfer

i L i i J
8 o o o o

= variability in sublimation rate VM L33

30+-Ch<
25

= vial-to-vial product variability (in conflict with FDA/EMA guidelines)
- no monitoring and control at vial level

5. No flexibility
- batch freeze-dryer validated for fixed amount of vials
- time gap between upstream processing and start of freeze-drying too long
- handling equipment before and after freeze-drying continuous
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Aim & concept

To develop & validate a continuous and controlled freeze-drying technology for unit doses

* Spin-freezing to create thin layer + large surface area
e Separate process modules, separated by load-locks
* Extensive implementation of PAT tools to assure process control

* Scale-up through multiplication
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freezing |y dVing o drying o &capping
I
2000 vials / day
Continuous pharmaceutical freeze-drying of unit doses I - -
y I N N
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Opportunity

Sublimation front moves from inside the vial towards PAT tool

/| Frozen product |

/I Ice-free product |

\| Sublimation front |
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Thermal imaging
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Single Vial Continuous Freeze-Dryer




Engineering Prototype
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Prototype — GMP

Aeration/Stoppering/capping

Drying chamber

annealing

s loadlocks

\ spinfreezer
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Outline

Case study I: continuous tablet manufacturing via TSWG
* PAT for process understanding & process modeling
* PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing
* Model based PAT implementation

Case study Ill: continuous freeze-drying

 Model based design of innovative pharmaceutical
manufacturing processes



General Conclusions

- Manufacturing innovation crucial for future healthcare system

Information/material flow

Pharmacy

A

»

Patient

MD

v

Portable device

<P

v

Manufacturing-on-
demand

v

Personalized
medicinal product
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Related features

Genomics, diagnostics,
miniaturized analytics

Wireless/mobile
devices, IT

Flexible, continuously
operating, manufacturing
lines with real-time release

Flexible dose,
novel drug delivery system,
combination medication

- Towards model-based design of flexible manufacturing equipment
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Questions?
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