

PAT for model based design, optimization, monitoring and control of continuous manufacturing

Prof. Dr. Thomas De Beer

Thomas.DeBeer@UGent.be

Laboratory of Pharmaceutical Process Analytics & Technology

Ghent University, Belgium

Outline

Case study I: continuous tablet manufacturing via TSWG

- PAT for process understanding & process modeling
- PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing

• Model based PAT implementation

Case study III: continuous freeze-drying

• PAT & model based design

Direct compression (DC) – roller compaction (RC) – wet granuation (WG)

- API solid state properties
- API solubility
- API load (dosage range)
- API flow properties (adhesion/cohesion)
- API compaction properties

Modular screw configuration resulting in shear environment changes:

- mixing
- various rate processes of wet granulation

shaping final granule characteristic distribution (size, shape, moisture content, strength,...)

- Process understanding is limited
- Mechanistic models:
 - Develop mechanistic understanding of the functional role of individual screw elements on different granulate CQA's
- Population Balance Modelling (PBM): Mechanistic description of particulate system undergoing size change mechanisms
- <u>1-dimensional PBM</u>: Granule size distribution (GSD) during TSG
- <u>Multi-dimensional PBM</u>: tracking GSD in combination with granule CQA's (porosity, moisture distribution, etc.) of each size class

- <u>State-of-the-art modeling methodology</u>: Experimental data only collected at granulator outlet
 - No experimental information about granule formation along length of granulator barrel
 - Difficult/impossible to calibrate PBM adequately
- Solution: Compartmental "multi-dimensional" PBM
 - Granulator considered as series of individual blocks/modules
 - Track particle size/porosity/moisture dynamics along length of granulator barrel

Role of individual blocks can be understood

μm

- **New kernel** developed based on experimental observations, which can predict both mono-modal and multi-modal distributions
- Breakage not needed in wetting zone → bimodality caused by lack of aggregatation due to limited liquid (binder) availability

Modeling conclusions:

- Reasonable fits for all zones
- Sound calibration based on **unique PAT data**; high predictive power
- Fast calculation: ideal for scenario analysis

Future perspectives:

- Development of **generic** twin-screw granulation model
- Upgrade PBM models allowing the prediction of other granule quality attributes (such as **porosity/density**) besides particle size
- Up-scaling/down-scaling

Through pre-competitive consortium: academia & industry

Outline

Case study I: continuous tablet manufacturing via TSWG

- PAT for process understanding & process modeling
- PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing

• Model based PAT implementation

Case study III: continuous freeze-drying

 Model based design of innovative pharmaceutical manufacturing processes

Outline

Case study I: continuous tablet manufacturing via TSWG

- PAT for process understanding & process modeling
- PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing

• Model based PAT implementation

Case study III: continuous freeze-drying

 Model based design of innovative pharmaceutical manufacturing processes

Monitoring of L/S ratio

"The only way to learn something about a system is to disturb it and then observe it." Kevin Dunn

» Dynamic process excitation

Manipulated variable: Liquid addition pump speed

<u>**Response variable</u>**: Granule L/S ratio</u>

» <u>Control relevant model</u>:

$$G(s) = \frac{0.1557s + 0.2253}{s + 0.4687}e^{-3s}$$

Nominalepympspacech (NevcheloRspedictive Control)

RAW MATERIAL PROPERTY DATABASE

Material selection

- Excipients: WG + DC filler + Disint. + Binder + Glid. + Lubric.
- <u>APIs:</u> Micronized + fine to dense + granular

\Rightarrow Aim to span wide property range such that model cover properties of new materials

Particle properties

- Particle size distribution
- Particle shape quantification
- Surface area

Bulk properties

- · Bulk, tapped and true density
- Compressibility
- Electrostatic charge
- · Moisture content, sorption and desorption
- Permeability and fluidization
- Powder flow: (Dynamic) angle of repose, Flow energy, Flow through an orifice, Ring shear testing Wall friction

Virtual Twin

Outline

Case study I: continuous tablet manufacturing via TSWG

- PAT for process understanding & process modeling
- PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing

• Model based PAT implementation

Case study III: continuous freeze-drying

 Model based design of innovative pharmaceutical manufacturing processes

Outline

Case study I: continuous tablet manufacturing via TSWG

- PAT for process understanding & process modeling
- PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing

Model based PAT implementation

Case study III: continuous freeze-drying

 Model based design of innovative pharmaceutical manufacturing processes

CFD model based NIR spectroscopy implementation for in-line assay monitoring of a pharmaceutical suspension

- High dose (100 mg/mL) suspension
- Manufactured at full scale
 - 150 L compounding vessel
 - One-pan process
 - Gradually discharged to a bottle filling system
 - Peristaltic flow

filling line

- Recirculation zone at entrance T-piece
- Flow not yet fully stabilised into laminar flow profile at NIR sensor location
- Solution: extend T-piece to ensure fully developed laminar paraboloidal flow profile
 - Hydrodynamic entry length $L_{h,laminar} = 0.05 \times Re \times D \times c$
 - \mathbb{P} Re = Reynolds number [-]
 - \square D = diameter circular tube [m]
 - \bigcirc c = safety factor [-]

- Recirculation zone at entrance T-piece
- Flow not yet fully stabilised into laminar flow profile at NIR sensor location
- Solution: extend T-piece to ensure fully developed laminar paraboloidal flow profile
 - Hydrodynamic entry length $L_{h,laminar} = 0.05 \times Re \times D \times c = 0.1643 \text{ m} = 16.43 \text{ cm}$
 - \bigcirc Re = Reynolds number = 43.8
 - \square D = diameter circular tube = 0.025 m
 - \bigcirc c = safety factor = 3

Outline

Case study I: continuous tablet manufacturing via TSWG

- PAT for process understanding & process modeling
- PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing

Model based PAT implementation

Case study III: continuous freeze-drying

 Model based design of innovative pharmaceutical manufacturing processes

Outline

Case study I: continuous tablet manufacturing via TSWG

- PAT for process understanding & process modeling
- PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing

• Model based PAT implementation

Case study III: continuous freeze-drying

 Model based design of innovative pharmaceutical manufacturing processes

Case study 3 – Continuous Freeze-Drying

- large molecules considered key driver of growth in pharma industry
- over 300 FDA and EMA approved biopharmaceutical products
- <u>+</u> 50% freeze-dried
- freeze-drying **preferred way of stabilizing** biopharmaceutical drug products

Antibodies

Enzymes Hormones

Antibiotics

Dry Drops

Body Tissue

Vitamins Bacteria

Vaccines Cytostatics

Fast Melting Tablets

Pharmaceutical Batch Freeze Drying

low temperature drying process to convert solutions of (heat-) labile materials into solids having sufficient stability

Pharmaceutical Batch Freeze Drying

Lab scale freeze-dryer

- 1. Drying chamber
 - vials to be freeze-dried on shelves
 - shelf temperature is controlled
 - chamber pressure is controlled

2. Condensor

only 2 process settings

CQA's freeze-dried product:

- (i) API state and stability
- (ii) residual moisture content
- (iii) freeze-dried product cake structure
- (iv) reconstitution time

Pharmaceutical Batch Freeze Drying

1. High production cost

- large equipment with high operational, maintenance and energy costs
- high standards of cleanliness and sterility
- **2.** Time-consuming (> 7 days)
- **3.** Up-scaling \rightarrow re-optimisition and validation
- 4. Impaired quality
 - freezing step is uncontrolled
 - unefficient & uneven heat transfer
 - \Rightarrow variability in sublimation rate

- no monitoring and control at vial level

5. No flexibility

- batch freeze-dryer validated for fixed amount of vials
- time gap between upstream processing and start of freeze-drying too long
- handling equipment before and after freeze-drying continuous

Aim & concept

To develop & validate a continuous and controlled freeze-drying technology for unit doses

- Spin-freezing to create thin layer + large surface area
- Separate process modules, separated by load-locks
- Extensive implementation of **PAT** tools to assure process control
- Scale-up through multiplication

Sublimation front moves from inside the vial towards PAT tool

Thermal imaging

$$P_{tot} = 2\pi k_{glass} h \frac{(T_{v,o} - T_{v,i})}{\ln(\frac{r_{v,i}}{r_{v,o}})}$$

Temperature gradient over <u>glass wall</u> and <u>ice layer</u> can be calculated: 0,5°C

Single Vial Continuous Freeze-Dryer

Engineering Prototype

Prototype – GMP

Outline

Case study I: continuous tablet manufacturing via TSWG

- PAT for process understanding & process modeling
- PAT for process monitoring & control

Case study II: pharmaceutical suspension manufacturing

• Model based PAT implementation

Case study III: continuous freeze-drying

 Model based design of innovative pharmaceutical manufacturing processes

General Conclusions

- Manufacturing innovation crucial for future healthcare system

- Towards model-based design of <u>flexible</u> manufacturing equipment

Acknowledgements

- Researchers Laboratory of Pharmaceutical Process Analytics & Technology
- BIOMATH: Prof. Ingmar Nopens & researchers
- Laboratory of Pharmaceutical Technology: Prof. Chris Vervaet & researchers
- Jos Corver (RheaVita)

BI©MATH

Questions?

