PQRI Phase 2 Elemental Impurities Collaborative Study

Key Findings

James Harrington Research Chemist, Analytical Sciences, RTI International

www.rti.org

RTI International is a registered trademark and a trade name of Research Triangle Institute.

- Any images of or references to specific commercial products, processes, or services does not constitute an endorsement or recommendation by PQRI or Interlaboratory study organizers.
- The views and opinions of authors expressed herein do not necessarily state or reflect those of PQRI, and shall not be used for advertising or product endorsement purposes.

Study Participant labs

- Final tally of responding labs
 - Reproducibility analysis and comparison to reference data:

ICP-MS - Tablets	ICP-MS - Raw Materials	XRF
21 labs	13 labs	4 labs

– Microwave type analysis:

SRC Microwave	IPV Microwave	
12 labs	10 labs	

- Digestion method analysis:

Exhaustive Extraction	Total Digestion
19 labs	7 labs

Method variability - Preparation

Microwave Digestion method variability

	Max Temperature (°C)	Max Pressure (psi)	Ramp time (min)	Hold time (min)
	Digestic	on method	()	
Total Digestion	210-250	85-2320	15-25	15-20
Exhaustive extraction	175-200	80-2321	10-20	0-25
	Microwave	system type		
SRC system	175-250	80-2321	10-25	0-20
IPV system	175-200	300-870	10-20	10-25

XRF labs

- 3 of 4 used (WDXRF) systems
 - Higher sensitivity than EDXRF
 - Wider range of elements than EDXRF.

Mix time	Oven temp	Oven time	Press load	Press time
120-1200 s	40-90 °C	40-1260 min	10-35 ton	60-120 s

Method variability - Analysis

Element	As	Cd	Со	Hg	Ni	Pb	V
Collision cell gases	He (16), None (2) $H_2(1)$ $O_2(1)$ not spec. (1)	None (17) He (4)	He (17) None (3) not spec. (1)	None (17) He (4)	He (17) None (3) not spec. (1)	None (16) He (5)	He (15) None (2) NH₃ (1) H ₂ /He (1) not spec. (2)
Internal Standard	Rh (12) Ga (3) Sc (2) In (2) not spec. (2)	Rh (16) In (2) not spec. (3)	Rh (12) Ga (3) Sc (2) In (2) not spec. (2)	TI (14) In (1) Bi (1) Rh (1) Pr (1) not spec. (3)	Rh (12) Ga (3) In (2) Sc (2) not spec. (2)	TI (14) Bi (2) In (1) Rh (1) not spec. (3)	Rh (11) Ga (3) Sc (3) In (2) not spec. (2)

- Most used the recommended method
- Interested in "Unspecified" instances
 - Individual lab reports can show impact on results, spur discussion with labs around best practices

Standard Liquid Sample

- Most labs were accurate.
- High variation between labs
 - Biased by erroneous results from 2 labs.
- Variability is not instrumentbased

ICP-MS vs Reference Lab – Tablet Materials

 Several elements were comparable to reference lab results

- Exceptions: Cd, Hg, and V
- All labs, Exhaustive extraction only, and Total digestion only

Statistics refresher:

P-value – probability that difference is due to chance

All labs

	Analyte	Material	Measurements >LOQ (n)	Reference concentration (ug/g)	Mean concentration (ug/g)	Geometric SD (ug/g)	95% confidence Interval	P value
		Tablet Level 1	78	5.76	5.9	1.4	(5.5, 6.4)	0.485
	As	Tablet Level 2	78	17.2	17	1	(16, 17)	0.242
		Tablet Level 3	78	42.4	42	1	(40, 44)	0.723
		Tablet Level 1	78	1.94	1.9	1.3	(1.8, 2.0)	0.252
	Cd	Tablet Level 2	75	4.82	4.6	1.2	(4.4, 4.7)	<mark>0.003</mark>
		Tablet Level 3	76	14.6	14	1	(13, 15)	<mark>0.049</mark>
Co		Tablet Level 1	78	8.92	8.7	1.2	(8.3, 9.1)	0.231
	Со	Tablet Level 2	75	19.8	19	1	(18, 19)	<mark>0.002</mark>
		Tablet Level 3	76	39.8	39	1	(37, 40)	0.203
		Tablet Level 1	28	3.64	0.8	1.7	(0.7, 1.0)	<mark>< 0.001</mark>
	Hg	Tablet Level 2	63	14.4	1.5	1.5	(1.4, 1.7)	<mark>< 0.001</mark>
		Tablet Level 3	69	41.0	3.3	2.6	(2.6, 4.1)	<mark>< 0.001</mark>
		Tablet Level 1	72	8.59	8.7	1.2	(8.4, 9.1)	0.482
	Ni	Tablet Level 2	78	11.9	11	2	(9, 12)	0.100
		Tablet Level 3	78	15.3	14	2	(13, 16)	0.197
		Tablet Level 1	78	2.49	2.5	1.5	(2.3, 2.8)	0.638
	Pb	Tablet Level 2	78	5.79	5.6	1.6	(5.0, 6.2)	0.533
		Tablet Level 3	78	15.1	14	2	(13, 16)	0.303
		Tablet Level 1	75	22.8	21	1	(20, 22)	<mark>< 0.001</mark>
	V	Tablet Level 2	75	23.9	23	2	(20, 27)	0.798
		Tablet Level 3	54	1.25	1.6	2.0	(1.3, 1.9)	0.016

Key takeaways: Lab variability (ICP-MS)

Good reproducibility for most analytes at high concentrations

-

- Both within and between laboratories.
- Consistent results WITHIN labs, but higher variability between labs
 - Specific elements Hg, V

			Mean					
		Total	log ₁₀ (concentration+1)	Within lab	Within lab	Across lab	Across lab	Reproducibility
Material	Analyte	Measurements	(µg/g)	Std Dev	RSD (%)	Std Dev	RSD (%)	Ratio
	As	87	0.842	0.057	6.8	0.247	<mark>29.3</mark>	4.40
	Cd	87	0.462	0.082	<mark>17.8</mark>	0.073	<mark>15.8</mark>	0.859
Tablat	Co	87	0.987	0.066	6.6	0.108	<mark>11.0</mark>	1.70
	Hg	81	0.276	0.084	<mark>30.3</mark>	0.192	<mark>69.7</mark>	5.49
LOVOI I	Ni	87	0.991	0.054	5.5	0.104	<mark>10.5</mark>	1.97
	Pb	87	0.556	0.047	8.5	0.234	<mark>42.0</mark>	5.83
	V	84	1.349	0.047	3.5	0.109	8.1	2.32
	As	87	1.254	0.048	3.8	0.095	7.6	1.96
	Cd	87	0.723	0.036	5.0	0.286	<mark>39.6</mark>	1.91
Tablat	Со	87	1.251	0.047	3.8	0.489	<mark>39.1</mark>	1.92
	Hg	81	0.382	0.028	7.4	0.249	<mark>65.1</mark>	5.99
	Ni	87	1.078	0.117	<mark>10.8</mark>	0.224	<mark>20.8</mark>	1.87
	Pb	87	0.827	0.073	8.8	0.307	<mark>37.1</mark>	4.74
	V	84	1.387	0.240	<mark>17.3</mark>	0.271	<mark>19.5</mark>	1.12
	As	87	1.635	0.032	2.0	0.160	9.8	5.03
	Cd	87	1.141	0.042	3.7	0.399	<mark>34.9</mark>	<mark>9.97</mark>
Tablat	Co	87	1.564	0.107	6.8	0.477	<mark>30.5</mark>	5.38
	Hg	81	0.613	0.072	<mark>11.7</mark>	0.693	<mark>113.0</mark>	<mark>9.37</mark>
	Ni	87	1.190	0.084	7.1	0.266	<mark>22.4</mark>	3.02
	Pb	87	1.190	0.024	2.1	0.392	<mark>32.9</mark>	<mark>16.3</mark>
	V	81	0.393	0.085	<mark>21.7</mark>	0.324	82.4	3.51

Key takeaways: Lab variability (cont'd)

Analysis of tablets by ICP-MS

- Consistent results WITHIN labs, but higher variability between labs
 - Specific elements Hg, V

Key takeaways: Lab variability (cont'd)

Analysis of tablets by ICP-MS

- Consistent results WITHIN labs, but higher variability between labs
 - Specific elements Hg, V

Key takeaways: Digestion method

Exhaustive extraction vs Total Digestion

- No significant difference for tablets
 - P values: 0.064 0.739
- Variability was different between methods
 - Total digestion < exhaustive extraction
 - Both within and between labs

Key takeaways:

SRC vs IPV

- Most elements in Raw Materials
 >LOQ were consistent
- Exceptions: Hg, Pb
 - Concentrations by SRC > IPV
 - IPV more variable
 - Potential volatility of Hg?

Analyte	Material	P-value
Hg	Tablet Level 1	<mark>0.013</mark>
	Tablet Level 2	<mark>0.004</mark>
	Tablet Level 3	<mark>< 0.001</mark>
Pb	Tablet Level 1	0.080
	Tablet Level 2	<mark>0.017</mark>
	Tablet Level 3	<mark>0.002</mark>

Pb--Concentration vs. Microwave Type

Key takeaways: Raw Material analysis

Raw material analysis (all labs)

Material	Elements with false positive rate >10%*	Elemental recoveries vs Reference	Elements 90-110% recovery vs Reference	Highly reproducible elements (s _R :s _r < 6)	Elements of Concern
Lactose	Ni, <mark>V</mark>	NA	NA	Ni, Pb	Ni, V
Magnesium Aluminum Silicate		99.4 – 362%	Pb, V	Co, Ni, Pb, V	As, Cd, Ni
Microcrystalline Cellulose	As, Cd, Co, Hg, Ni, <mark>V</mark>	NA	NA	Hg, Ni, Pb	As, Cd, Co, Hg, Ni, V
Red Ferric Oxide	Cd	83.0 – 248%	Ni	As, Co, Hg, Ni, Pb	Cd
Silicon Dioxide Standard (As, Co, Hg)	Cd, Ni, Pb, <mark>V</mark>	88.7 – 91.8%	As	As, Co, Hg	V
Silicon Dioxide Standard (Cd, Ni, Pb)	Co, Hg, <mark>V</mark>	33.0 – 98.1%	Cd, Ni, Pb	As, Cd, Ni, Pb	V
Starch	Ni, Pb, <mark>V</mark>	NA	NA		V
Stearic Acid	Cd, Pb, <mark>V</mark>	NA	NA		V

Within-lab variability was better than between-lab variability, greater variability for RM's than tablets High false positive rate for V

Similar analysis was performed for Exhaustive only, Total only

Raw material analysis - Summation Analysis vs Direct Analysis

Material	Elements w/ Avg conc p < 0.05	Within lab st dev p < 0.05	Between lab std dev p < 0.05	Elements of Concern
Tablet Level 1	Hg, Pb	Cd, Co, Hg, V	Cd, Co, Hg, Pb, V	Hg
Tablet Level 2	Cd, Hg	As, Cd, Ni, V	As, Cd, Co, Pb	Cd
Tablet Level 3	As, Cd, Hg, V	Cd, Co, Hg, Pb, V	Co, Hg, Ni, Pb, V	Hg, V

- Mixed agreement between the summation approach and the direct analysis of tablets.
- As, Co, Ni, and V best agreement between measured and summed concentrations
- Variability of the summation approach was higher than direct analysis
 - Summation could impact the analysis of low level impurities.

Quality control reproducible within labs except Cd; good reproducibility for most elements across labs

Material	Analyte	Mean log ₁₀ (concentration+1) (μg/g)	Within lab RSD (%)	Across lab RSD (%)
	As	0.680	1.7	<mark>10.2</mark>
	Cd	0.316	<mark>14.4</mark>	<mark>65.7</mark>
Earmulation 1	Со	1.227	0.9	<mark>12.4</mark>
Poodback	Hg	1.008	1.2	5.1
Reauback	Ni	1.775	0.3	4.5
	Pb	0.439	3.3	7.3
	V	1.629	0.4	7.0
	As	0.724	1.2	5.7
	Cd	0.303	<mark>12.9</mark>	<mark>37.9</mark>
Earmulation 7	Co	1.113	1.0	7.1
Readback	Hg	0.976	3.5	4.4
	Ni	1.769	0.5	1.7
	Pb	0.491	4.0	9.0
	V	1.474	0.7	0.8

Key takeaways: XRF analysis

Vs reference

- Most elements agreed with reference
- Consistent within-lab variability, higher between-lab variability
- As, Cd: ICP-MS < XRF

Vs participant ICP-MS

- Cd consistently higher by XRF
- Within-lab variability
 - Better for XRF, likely an artifact
- Between-lab variability: XRF < ICP-MS
- Similar for Total and Exhaustive

Material	Elements Average concentration p < 0.05	Within lab standard deviation p < 0.05	Between lab standard deviation p < 0.05
Level 1	Cd, Hg	As, Co, Ni, V	As, Co, Ni, V
Level 2	As, Cd, Hg	As, Co, Ni, Pb, V	Со
Level 3	As, Cd, Ni	As, Cd, Co, Ni,	As

	Strong Equivalence	Moderate Equivalence	Weak Equivalence
<u>Reproducibility</u> How variable is an element between labs and within labs (Strong = low variability; weak = higher variability)	As, Co, Ni	Cd, Hg, Pb	V
<u>Exhaustive vs Total</u> Compares exhaustive vs total	Cd	As, Co, Hg, Ni, Pb	V
Microwave types (SRC vs IPV) Compares SRC vs IPV	Cd, Ni	As, Co, V	Hg, Pb
Summation Approach Compares summation of RM's vs finished product analysis	Ni	As, Co, Pb	Cd, Hg, V
Comparison to Reference Compares all lab results to Reference lab results	Pb	As, Cd, Co, Ni	Hg, V
Overall ICP-MS Summarizes overall element performance	Ni	As, Cd, Co, Pb	Hg, V

Note: Similar analysis performed for raw materials.

Summary of XRF results by analyte

	Strong Equivalence	Moderate Equivalence	Weak Equivalence
<u>Reproducibility</u> How variable is an element between labs and within labs (Strong = low variability; weak = higher variability)	As	Hg	Cd, Co, Ni, Pb, V
XRF vs ICP-MS (all) Compares XRF lab results to all ICP-MS laboratory results	Pb, V	Co, Hg, Ni	As, Cd
XRF vs ICP-MS (exhaustive) Compares XRF lab results to ICP-MS laboratory results for exhaustive extraction		Co, Hg, Ni, Pb, V	As, Cd
XRF vs ICP-MS (total) Compares XRF lab results to ICP-MS laboratory results for total digestion	Co, Pb	Hg, V	As, Cd, Ni
Comparison to Reference Compares XRF lab results to ICP-MS reference laboratory results for total digestion	Co, Ni, Pb, V		As, Cd, Hg
Overall XRF Summarizes overall element performance	Pb	Co, Ni, V, Hg	As, Cd

Note: XRF analysis only performed for Tablet materials.

<u>Cd challenges</u> MoO, Sn Exhaustive vs Total digestion

Not all methods are created equal!

Conclusions

- Several elements were comparable between participants, reference laboratory. Exceptions: Cd, Hg, V.
- Reproducibility was good for high conc elements. Reproducibility was better for total digestion than for exhaustive extraction.
- Comparable concentrations were reported for exhaustive vs total; total digestion was less variable than exhaustive extraction.
- SRC and IPV systems comparable high conc elements, except mercury and lead. Greater variability for IPV systems.
- Summation approach was comparable to direct analysis of tablets for most analytes except Hg and Cd, but summation demonstrated greater variability for most analytes.
- XRF was comparable to ICP-MS, both participant labs and reference values, for most analytes except As, Cd, and Hg. Variability was greater for ICP-MS than XRF. Only As and Hg demonstrated strong reproducibility.

Key questions – Breakout session coming up!

- What level of error or uncertainty would represent a compelling indicator for adjusting analytical methods?
- What strategies are labs taking with respect to total digestion/ exhaustive extraction considering the extensive infrastructure and safety considerations for total digestion?
 - How are you demonstrating equivalence between exhaustive extraction and total digestion methods?
- How do analytical labs design internal SOP's for validation to account for variability and address regulatory requirements for method development?
- When approaching a control limit or PDE, how do you account for variability? Are any additional steps included to account for this?
- Are comparable levels of analytical uncertainty and variability of results acceptable for risk assessment purposes as for routine release testing of products?
- What role do statisticians and analytical experts play in the development of risk assessments to account for potential uncertainties?
- Are the observations regarding mercury recovery in tablets (i.e. loss over time) consistent with real-world products, and if so, what can be done to account for hold time?

Acknowledgements

- PQRI
- Frank Weber, RTI International
- Phil Riby, University of Manchester
- Matt Roberts, Samar Thiab, Liverpool John Moores University
- Denise McClenathan, Kelly Smith, Andrei Shauchuk, P&G
- Dave Schoneker, Colorcon/Black Diamond Consulting
- Glenn Williams, Thanh Nguyen, Rigaku
- Frank Flynn, Peter Ciullo, Vanderbilt Minerals
- Josh Foote, Perrigo
- Gary Hayes, Colorcon
- TAC Team members
- All participating labs

The University of Manchester