4th PQRI Workshop on ICH Q3D Elemental Impurities Requirements November 9-10, 2020

PQRI Phase 2 Elemental Impurities Collaborative Study Purpose and Design

Donna Seibert, Ph.D. Senior Manager Perrigo Company

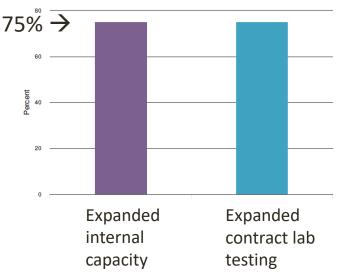
Disclaimer

- Any images of or references to specific commercial products, processes, or services does not constitute an endorsement or recommendation by PQRI, the TAC team, or Interlaboratory study organizers.
- The views and opinions of authors expressed herein do not necessarily state or reflect those of PQRI, and shall not be used for advertising or product endorsement purposes.

Learning Opportunities

•Risk assessment requires some basis in data

•Key question for industry and the regulatory community


-How reliably can we measure elemental impurities in drug products, APIs and excipients at the levels outlined in ICH Q3D and USP <232>/<233>?

•Variety and complexity of pharmaceutical samples and formulations

•Many labs expanding capabilities

 Pharmaceutical labs adapting to ICP-MS analysis

–Existing spectroscopy labs adapting to the requirements of <233>

Phase I Study and Outcomes

Completed in 2014-2015

Outcomes

- Data for standardized samples allowed assessment of variation across laboratories, between lab variation was higher than within lab variation
- Labs benefit from access to standardized evaluation samples
- Comparison of summation approach and finished product testing
 - Confounded by low levels of native elements and high influence of outliers
- Tighter variation among non-uniform methods
 - Suggests need for flexibility in methodology for testing labs
- XRF demonstrated as a complementary technique to ICP-MS
 - Bias from background levels in materials used to make standards (esp. Pb & V)

Second Round Study

- PQRI Sponsorship—allows wider participation
- Study Administrator—RTI International

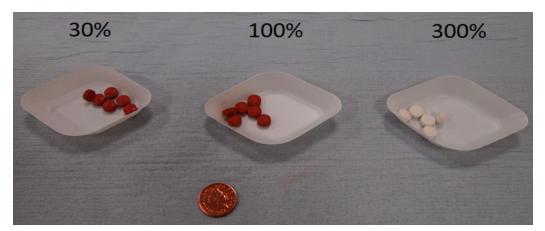
Inter-laboratory Study Objectives

Objectives

- Address some key technical challenges faced by industry in preparation for compliance to ICH Q3D and USP <232>/<233>
- Provide a data-driven way to discuss technical aspects and expected variation of ICP-MS analysis of elemental impurities
- More specific objectives:
 - Inter-laboratory data comparison for standardized samples
 - Inter-laboratory evaluation of effectiveness of microwave digestion
 - Comparison of acid leach/extraction techniques to total metal extraction
 - Examination of the correlation (good or bad) between the analysis of individual components (summation) vs. the formulated tablet analysis
 - Comparison of ICP-MS and alternative techniques (ICP-OES and XRF)

Second Round Evaluation Samples

Liquid Sample


 Added to assess instrumental variation independent of sample preparation

Solid Samples

- Tableting is preferred to preserve homogeneity
- Material combination must have favorable mixing & flow properties, and must be compressible
- Multiple tableted evaluation samples targeting three different levels (30%, 100%, and 300% J)
- El source from pharma materials wherever possible
- El source from materials that are not easily solubilized

Formulation Design

Raw Material	Tablet Level 1 (30% J, μg/g)	Tablet Level 2 (100% J, μg/g)	Tablet Level 3 (300% J, μg/g)
Microcrystalline Cellulose	0.150	0.150	0.150
Magnesium Aluminum Silicate Clay, USP/NF	0.050	0.100	0.100
Lactose monohydrate, NF	0.5305	0.465	0.478
Pregelatinized Starch	0.200	0.200	0.200
Stearic Acid	0.012	0.012	0.012
Ferric Oxide Red, BC	0.050	0.050	0.000
Silicon Dioxide Standard (As, Co, Hg)	0.0060	0.0180	0.0450
Silicon Dioxide Standard (Cd, Ni, Pb)	0.0015	0.0050	0.0150
Total	1.00	1.00	1.00

Digestion Optimization for ICP/MS


- Total digestion:
 - Highly aggressive microwave digestion (using HF or HBF₄)
 - Complete digestion that is stable (no re-precipitation)
 - Achieves clear solution with no insoluble material
- Exhaustive extraction:
 - Less aggressive microwave digestion (e.g., EPA 3051A)
 - Acid extraction that is equivalent to the total digestion results
 - Achieves totally recovery of EIs from tablet matrix, but does not necessarily achieve a clear solution
- Test the variability of the analytical method across the labs
 - Minimize the differences in sample preparation between labs
- Limitations:
 - HCl Not all microwave systems are compatible
 - HF/HBF₄ Not all labs equipped for use

Second Round Design Improvements & Best Practices

Uniform Sample Preparation

- Specify parameters such as sample size, sampling technique, replicates, acid mixtures, and digestion temperature/pressure
- Document type of digestion vessels and microwave model used
 - IPV vs. SRC

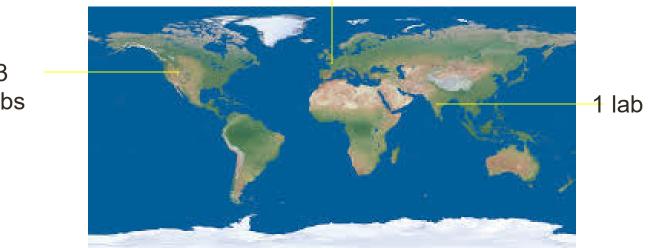
Second Round Design Improvements & Best Practices

Uniform Analysis

- Define isotopes used for quantitation
- Define procedures around units, LOQs, calibration, system suitability and data reporting
- Document interference management (reaction/collision gases, correction equations, etc.), internal standards, and any additional isotopes monitored
- Document instrument type
 - Single Quad vs. Triple Quad vs. High resolution systems

Sample Preparation and Calibration for XRF

Key Decisions for XRF Study Design


- Calibration type
 - How to minimize bias for Pb & V?
 - Considered use of standard additions
 - Because of multiple tablet levels all with similar composition, fundamental parameters option was utilized
- FP approach had implications on sample preparation
 - Additional, clean source of silicon dioxide required

Recruiting

- 24 laboratories participated
 - Pharma manufacturers or suppliers: 16 laboratories •
 - Contract/CRO: 3 laboratories
 - Instrument manufacturers: 3 laboratories •
 - Government/compendial: 2 laboratories

10 labs

13 labs

Acknowledgements

- PQRI
- James Harrington, Frank Weber, RTI International
- Phil Riby, University of Manchester
- Matt Roberts, Samar Thiab, Liverpool John Moores University
- Denise McClenathan, Kelly Smith, Andrei Shauchuk, P&G
- Dave Schoneker, Colorcon/Black Diamond Consulting
- Glenn Williams, Thanh Nguyen, Rigaku
- Frank Flynn, Peter Ciullo, Vanderbilt Minerals
- Josh Foote, Perrigo
- Gary Hayes, Colorcon
- TAC Team members
- All participating labs

Today's Agenda

Method Development and Laboratory Participant Perspective

• Denise McClenathan – P&G

Results Review and Publication

- ICP-MS Donna Seibert Perrigo
- XRF Glenn Williams and Thanh Nguyen Rigaku

12:30 – 1:00 pm Lunch

Main Take-aways

- Statistician Interpretation Steven Erickson RTI
- Key Findings James Harrington RTI

Implications for Analytical Testing in Laboratories for EI/Participant Perspective

• Francine Walker – SGS Chemical Solution Laboratories, Inc.

Implications on Risk Assessments/Industry Perspective

• Xiaoyi Gong - Merck

3:00 – 3:30 pm Break

Breakout Sessions—Explore the impact of the study on industry and regulators