

Pag

Method Development & Laboratory Participant Perspective

Denise McClenathan Group Leader, Elemental Analysis Capability

A Tale of Two Labs in One

"Reference Lab"

ICP-MS Method Development and Optimization Total Digestion & Exhaustive Extraction Tablet and Raw Material Reference Values

> <u>"Participant Lab"</u> Study Sample Analysis – Phase 2 ICP-MS and XRF

Elemental Impurities at P&G

400+ DRUG PRODUCTS WITH WIDE RANGE OF MATERIALS

Excipients: Salts, Minerals, Botanicals, Organics, Polymers

<u>Actives:</u> Bismuth Subsalicylate, TiO₂, ZnO, SnF₂, NaF, SeS₂, Al/Zr Based Actives

Co-Mingled: Trace EIs and Inorganic RMs

Analytical Challenges: Matrix Effects, Specificity, Digestion

P&G

ICP-MS Method Development

Uniform Procedures for Phase 2

Approach to Development and Optimization

- Total Digestion → Total Content Assessment
 Achieve Mass Balance
- Exhaustive Extraction (w/o HF/HBF₄) Evaluate Relative to Total Digestion
- Applicable to Wide Range of Instrumentation
 Individually-Pressurized Vessels & Single Reaction Chamber

Milestone UltraWAVE with ECR (HCl compatible)

• Leverage ICP-MS/MS (QQQ) for Selectivity

Andrei Shauchuk

Method Development for ICP-MS

Kelly Smith

Keys to Total Digestion Approaches

MORE THAN JUST "NUKING" THE MATRIX

Titrate acid combination to most complex ingredient

Stabilize the analytes (ex. Hg with Au or HCI)

Prevent formation of insoluble fluorides (Mg, Al, Ca, etc.)

- Complex excess fluoride with boric acid (2 step process)
- Prepare ultra-trace HBF₄ from HF & boric acid

Ultra-trace HBF₄ not commercially available

Sample Preparation – Total Digestion

RAW MATERIALS AND TABLETS

(1) Weigh sample Tablet (0.25 g) Raw material (0.01-0.15 g)

(2) Add reagents 0.5 mL of HCI 2.5 mL of HNO₃ 0.5 mL H_3PO_4 1.0 mL of HBF₄

- (3) Microwave digest
- (4) Transfer to 50 mL tube and dilute to volume
- (5) Prepare 50X dilution with internal standard

Single Reaction Chamber Ramp and Hold @ 250 °C

Individually-Pressurized Vessel Ramp and Hold @ 180 °C

Magnesium Aluminum Silicate Results

TOTAL DIGESTION AND ICP-MS/MS

Confirmation of Specificity

Analyte	Detection Scheme	Concentration (µg/g)
Cobalt	59 → 59 [He]	2.00
Copart	59 → 75 [O ₂]	1.83
Vanadium	51 $ ightarrow$ 51 [NH ₃]	10.1
vanadium	51 → 135 [NH ₃]	11.2

Interferences at m/z 59 ⁴³Ca¹⁶O⁺, ⁴²Ca¹⁶O¹H⁺, ²⁴Mg³⁵Cl⁺, ³⁶Ar²³Na⁺, ⁴⁰Ar¹⁸O¹H⁺, ⁴⁰Ar¹⁹F⁺

<u>Interferences at m/z 51</u> ³⁴S¹⁶O¹H⁺, ³⁵Cl¹⁶O⁺, ³⁸Ar¹³C⁺, ³⁶Ar¹⁵N⁺, ³⁶Ar¹⁴N¹H⁺, ³⁷Cl¹⁴N⁺, ³⁶S¹⁵N⁺, ³³S¹⁸O⁺, ³⁴S¹⁷O⁺

Summation Approach

LEVEL 1 TABLET – TOTAL DIGESTION

Summation Approach

LEVEL 1 TABLET – TOTAL DIGESTION

LEVEL 1 TABLET – TOTAL DIGESTION

LEVEL 2 TABLET – TOTAL DIGESTION

LEVEL 3 TABLET – TOTAL DIGESTION

ALL TABLET LEVELS – TOTAL DIGESTION

Percent of the Predicted Value

(Measured Tablet / RM Summation)

Sample	Arsenic	Cadmium	Mercury	Lead	Cobalt	Nickel	Vanadium
Tablet 1	100%	108%	67%	105%	100%	103%	98%
Tablet 2	99%	101%	84%	98%	101%	103%	101%
Tablet 3	98%	98%	97%	97%	97%	97%	100%

Sample Preparation – Exhaustive Extraction

RAW MATERIALS AND TABLETS

(1) Weigh sample Tablet (0.25 g) Raw material (0.01-0.15 g)

(2) Add reagents
 10 mL of HNO₃
 50 μL of 1000 ppm Au

(3) Microwave digest

- (4) Transfer to 50 mL tube and dilute to volume
- (5) Prepare 50X dilution with internal standard

Single Reaction Chamber Ramp and Hold @ 175 °C

Individually-Pressurized Vessel Ramp and Hold @ 175 °C

Exhaustive Extraction – Tablets and Raw Materials

COMPARISON TO TOTAL DIGESTION

Percent of Total Digestion (Exhaustive Extraction vs RM Summation)

	Arsenic	Cadmium	Mercury	Lead	Cobalt	Nickel	Vanadium
Tablet 1	98%	98%	93%	94%	99%	101%	99%
Tablet 2	106%	103%	95%	102%	97%	100%	99%
Tablet 3	111%	103%	96%	99%	98%	93%	100%
Magnesium Aluminum Silicate	92%	N/A	N/A	98%	95%	100%	77%
Ferric Oxide	93%	N/A	N/A	N/A	N/A	N/A	105%
SiO ₂ (As, Hg, Co)	110%	N/A	118%	N/A	113%	N/A	N/A
SiO ₂ (Cd, Pb, Ni)	N/A	106%	N/A	105%	N/A	107%	N/A

Reference Lab Learnings

Exhaustive extraction can be equivalent to total digestion when the procedure is appropriately optimized for the matrix.

P&G

ICP-MS Participant Results

Instrumentation / Approach

RAW MATERIALS AND TABLETS

Agilent 7900 ICP-MS

Agilent 8800 QQQ ICP-MS

Total Digestion Exhaustive Extraction ICP-MS & ICP-MS/MS

Usa Rattanaudompol

Total Digestion Results for Example Tablet

COMPARISON TO REFERENCE VALUE

Triple Quad Single Quad

*Represents LOQ Value

Summation Approach & Mass Balance Assessment

EXAMPLE TABLET – TOTAL DIGESTION

Summary of ICP-MS Results for Tablets

COMPARISON TO REFERENCE VALUES

Percent Recovery vs Reference

Sample	Preparation	ICP-MS	Arsenic	Cadmium	Mercury	Lead	Cobalt	Nickel	Vanadium
	Total	QQQ							
Toblet 4	Iotal	SQ						BLOQ	
Tablet	Extract	QQQ							
	Extract	SQ						BLOQ	
	Total	QQQ							
Tablet 2	TOTAL	SQ							
Tablet 2	QQQ								
	EXITACI	SQ							
	Total	QQQ							
Tablet 2	TOTAL	SQ							BLOQ
Tablet 3	QQQ								
	Extract	SQ							BLOQ

Summary of ICP-MS Results for RM Summation

COMPARISON TO REFERENCE VALUES

Percent Recovery vs Reference

Sample	Preparation	ICP-MS	Arsenic	Cadmium	Mercury	Lead	Cobalt	Nickel	Vanadium
Tatal	QQQ								
Tablat 1	TOtal	SQ						*	
Tablet	Extract	QQQ							
	EXITACI	SQ						*	
	Total	QQQ							
Tablet 2	TOTAL	SQ						*	
	QQQ								
	EXITACI	SQ						*	
	Total	QQQ							
Tablet 2	TOTAL	SQ							*
Tablet 3	QQQ							*	
	EXIIdu	SQ							*

Difference in Mercury Results

INVESTIGATING UNEXPECTED DATA

Difference in Mercury Results

INVESTIGATING UNEXPECTED DATA

Difference in Mercury Results

INVESTIGATING UNEXPECTED DATA

ICP-MS Learnings

Good agreement across digestion approaches and ICP-MS systems, with a few exceptions.

Mercury was unstable in the tablets AGAIN.

P&G XRF Participant Results

Instrumentation / Approach

TABLET ANALYSIS

Standard Preparation

Blend Raw Materials Add Liquid Standard Dry in Furnace Grind & Press

Sample Preparation Grind & Press

Bruker Tiger S8 WD-XRF Wavelength Dispersive XRF

Christina Haven

Example XRF Results

COMPARISON TO REFERENCE VALUE

*Not measured

XRF Results – All Tablets

COMPARISON TO REFERENCE VALUE

Percent of Reference Value

	Arsenic	Cadmium	Mercury	Lead	Cobalt	Nickel	Vanadium
Tablet 1							
Tablet 2							
Tablet 3							

N/A – Not Measured

Calibration and Drift – Arsenic

DIGGING DEEPER INTO THE XRF RESULTS

Standard	Concentration (µg/g)	Residual Error	QC Recovery
1	4.5		
2	30		N/A
3	15		N/A
4	9.0		N/A
5	9.0		N/A
6	45		N/A
7	4.5		
8	23		N/A

Calibration and Drift – Vanadium

DIGGING DEEPER INTO THE XRF RESULTS

Standard	Concentration (µg/g)	Residual Error	QC Recovery
1	52		
2	78		N/A
3	122		N/A
4	222		N/A
5	65		N/A
6	300		N/A
7	31		
8	160		N/A

Calibration and Drift – Lead

DIGGING DEEPER INTO THE XRF RESULTS

Standard	Concentration (µg/g)	Residual Error	QC Recovery
1	2.2		
2	3.8		N/A
3	6.3		N/A
4	11		N/A
5	16		N/A
6	8.8		N/A
7	2.4		
8	3.5		N/A

XRF Learnings

XRF performed better than expectations

Not practical for El screening on ever-changing number of products and materials

MIGHT consider for control method for a formulation

Investing in alternate approaches / instrumentation for flexibility, robustness, business continuity

• Digging into "WHY" for method training/transfers

• Balancing familiarity of the method and matrices with embracing the "fresh perspectives"

Acknowledgements

Procter & Gamble Kelly Smith Andrei Shauchuk Usa Rattanaudompol Christina Haven Roy Dobson

<u>Trace Analytical Challenges Sub-Team</u> Donna Seibert, Perrigo James Harrington, RTI International

Improving everyday life.