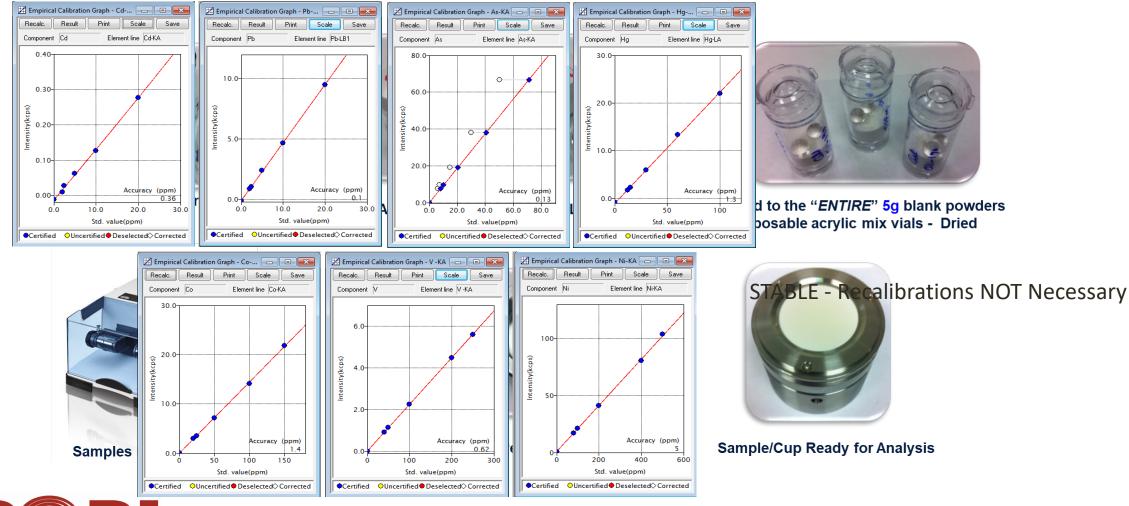

4th PQRI Workshop on ICH Q3D Elemental Impurities Requirements November 9-10, 2020

XRF Results of Phase 2 Collaborative Study

Presented by: Glenn Williams, Ph.D., Rigaku Thanh Nguyen, Ph.D., Rigaku

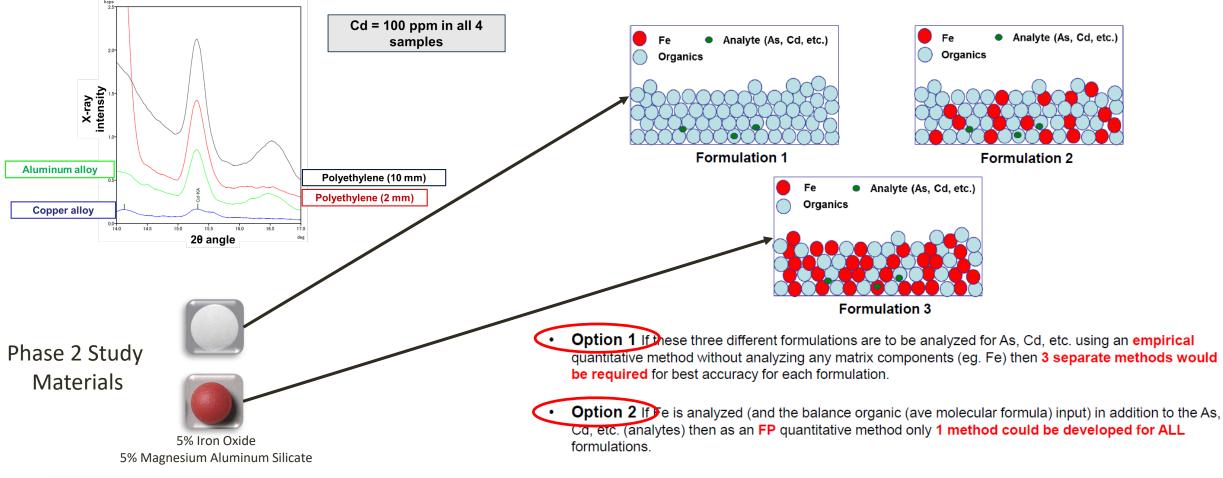
What is XRF?

- ① Primary X-rays strike inner shell electrons.
- 2 An inner shell electron is kicked out as a photo electron.
- ③ An outer shell electron transfers to fill the vacancy.
- Fluorescent x-ray is emitted with equivalent energy difference.
 Intensity is proportional to concentration


XRF Methods in One Slide

USP <735> General Chapter on XRF

XRF Methods in One Slide



Elemental analysis by WD-XRF: A simplified approach

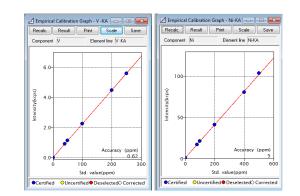
https://tabletscapsules.com/wp-content/uploads/pdf/tc_20170301_0027.pdf

Special Considerations for Phase 2 Study

Screening vs Final Product Testing

Screening \rightarrow Universal Method

Final Product \rightarrow Unique Empirical Method Calibration


Calibration Ranges – 1 g Dose Target Level!

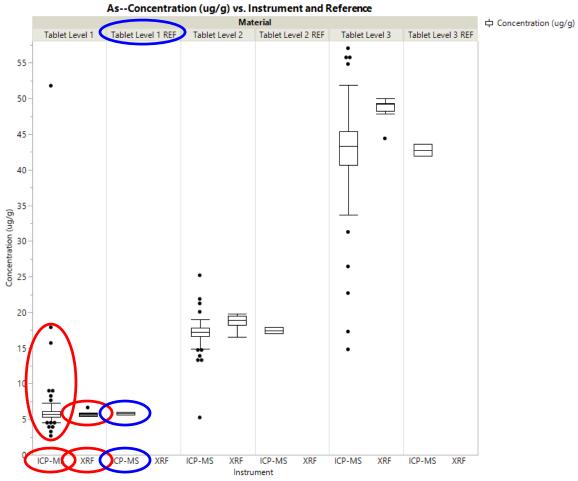
Element	Class	Oral 1 J (µg/g)	Oral 0.3 J (μg/g)	Oral 3 J (µg/g)		
Cd	1	5	1.5	15		
Pb	1	5	1.5	15		
As	1	15	4.5	45		
Hg	1	30	9	90		
Со	2a	50	15	150		
V	2a	100	30	300		
Ni	2a	200	60	600		

	Formulation 1 (Formulation 2 Formulation 3 Formulation 4 Formulation 5 Formulation 6 Formulation 7 Formulation							
	Formulation 1	(Formulation 2	Formulation 3	Formulation 4	Formulation 5	Formulation 6	Formulation 7	Formulation 8
RECOMIN	ENDED Spiking	Levels (ppm)						
Cd	1.5	3	5	10	3	15	1.5	7.5
Pb	1.5	3	5	10	15	7.5	1.5	3
As	4.5	30	15	9	9	45	4.5	22.5
Hg	9	18	30	60	18	90	9	45
Со	15	30	50	100	30	150	15	75
V	30	60	100	200	60	300	30	150
Ni	60	120	200	400	120	600	60	300

Results – Summary

Element	Class	Oral 1 J (μg/g)	Oral 0.3 J (μg/g)	Oral 3 J (µg/g)
Cd	1	5	1.5	15
Pb	1	5	1.5	15
As	1	15	4.5	45
Hg	1	30	9	90
Со	2a	50	15	150
V	2a	100	30	300
Ni	2a	200	60 🔶	600

		Total	Measurements	Reference	Mean	Geometric	95 %	
Analyte	Material	Measurements	>LOQ (n)	concentration	concentration	standard	confidence	P value
		(n)	>LOQ (N)	(ug/g)	(ug/g)	deviation (ug/g)	Interval	
	Tablet Level 1	9	9	6.05	5.6	1.0	(5.5, 5.7)	< 0.001
As	Tablet Level 2	9	9	17.9	19	1	(18, 19)	0.078
	Tablet Level 3	9	9	43.6	48	1	(47, 50)	< 0.001
	Tablet Level 1	9	9	1.97	2.5	1.2	(2.2, 2.9)	0.007
Cd	Tablet Level 2	9	9	4.61	7.2	1.3	(6.1, 8.5)	< 0.001
	Tablet Level 3	9	9	13.5	18	1	(15, 22)	0.019
	Tablet Level 1	9	9	9.02	8.1	1.7	(5.8, 11.4)	0.568
Со	Tablet Level 2	9	9	20.3	22	1	(18, 27)	0.545
	Tablet Level 3	9	9	40.4	41	1	(38, 45)	0.534
	Tablet Level 1	7	4	3.80	2.6	1.2	(2.2, 3.1)	0.026
Hg	Tablet Level 2	7	4	14.2	3.4	1.2	(2.8, 4.2)	< 0.001
	Tablet Level 3	7	7	41.2	3.6	2.2	(2.1, 6.4)	< 0.001
	Tablet Level 1	9	9	8.63	7.3	1.8	(5.0, 10.8)	0.435
Ni	Tablet Level 2	9	9	12.0	11	2	(8, 15)	0.641
	Tablet Level 3	9	9	15.3	18	1	(16, 20)	0.025
	Tablet Level 1	9	9	2.53	2.3	1.2	(2.0, 2.6)	0.175
Pb	Tablet Level 2	9	9	5.68	5.2	1.6	(3.9, 7.0)	0.598
	Tablet Level 3	9	9	14.8	15	1	(12, 19)	0.985
	Tablet Level 1	9	9	22.6	17	2	(10, 29)	0.343
V	Tablet Level 2	9	9	23.9	20	2	(12, 31)	0.426
	Tablet Level 3	9	9	1.31	1.9	2.3	(1.1, 3.3)	0.224

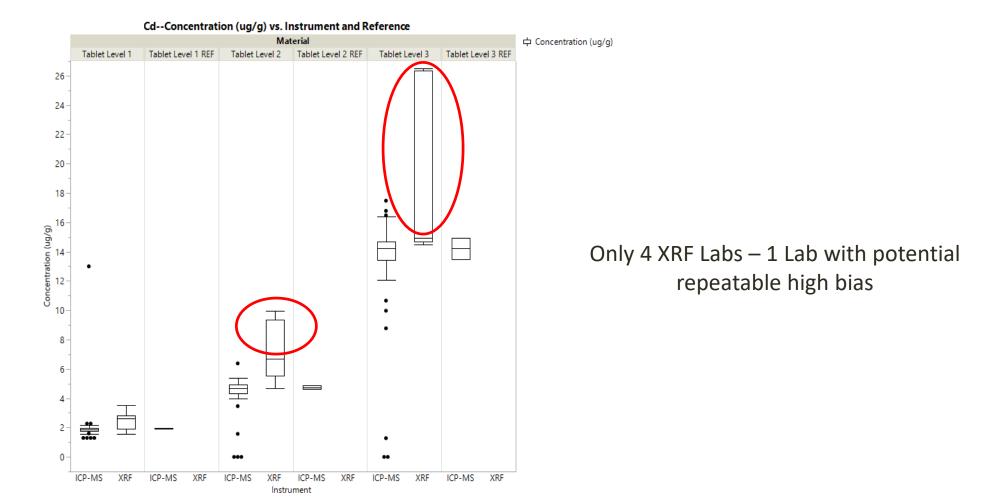

Comparison of XRF Values to Reference Values

ICP-MS

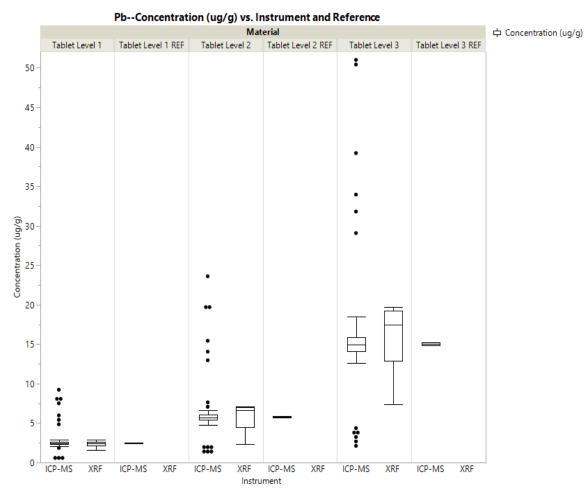
XRF

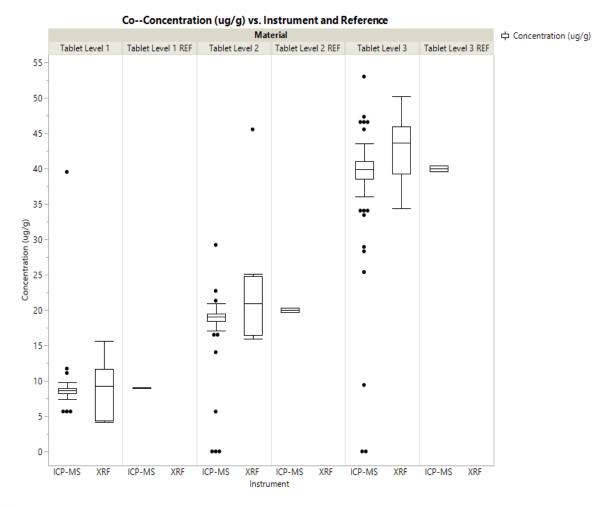
Results - Arsenic

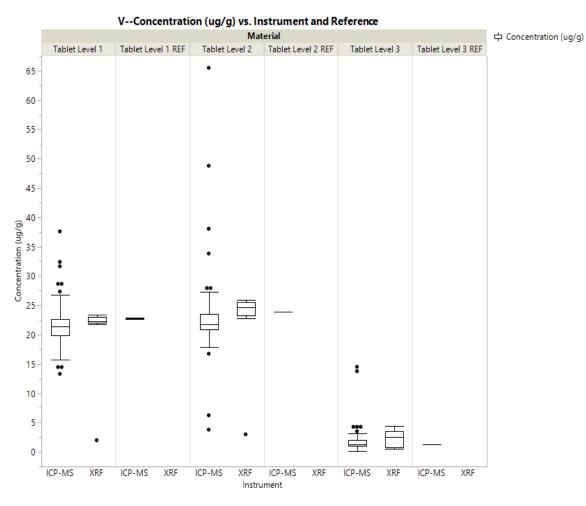
Results – Summary – Reference vs Expected Values

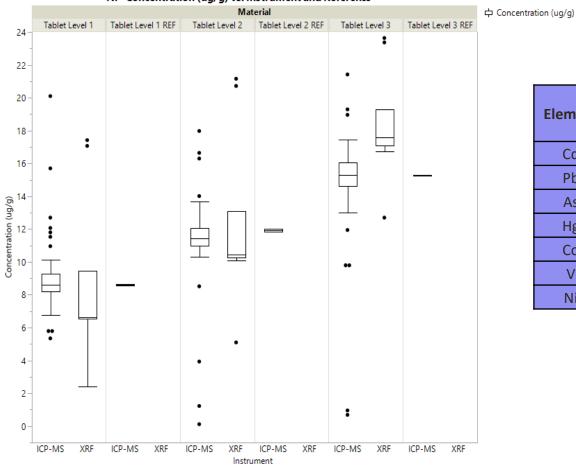

Analyte	Material	Expected concentration (ug/g)	Reference Concentration (ug/g)	% Recovery Reference vs Expected	XRF Concentration (ug/g)
	Magnesium Aluminum Silicate	1.5	1.90	127	
As	Red Ferric Oxide	0	0.473	NA	
	Silicon Dioxide Standard (As, Co, Hg)	1090	988	90.6	
	Tablet Level 1	6.65	6.05	91.0	5.6
	Tablet Level 2 Tablet Level 3	19.8 49.2	17.9 43.6	90.4 88.6	19 48

Direct Analysis Technique – No Digestion (or potential volatile loss? during digestion)

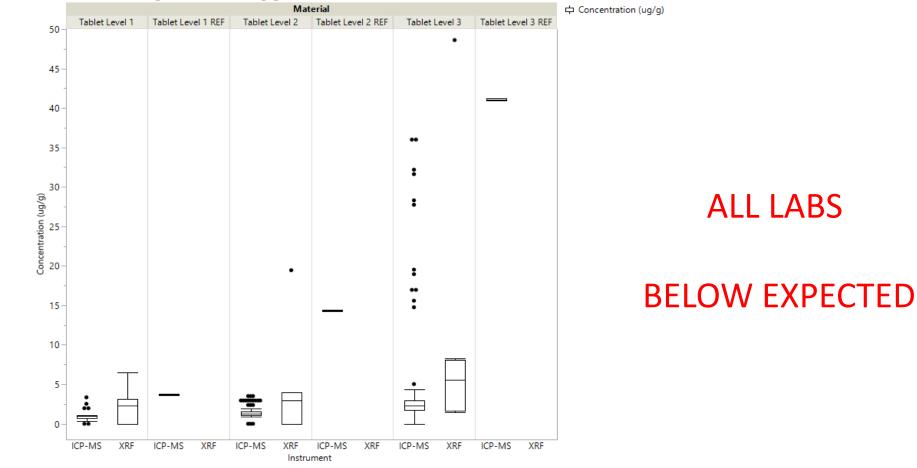

Results - Cadmium


Results - Lead


Results - Cobalt


Results - Vanadium

Results - Nickel


Ni--Concentration (ug/g) vs. Instrument and Reference

Element	Class	Oral 1 J (µg/g)	Oral 0.3 J (µg/g)	Oral 3 J (µg/g)
Cd	1	5	1.5	15
Pb	1	5	1.5	15
As	1	15	4.5	45
Hg	1	30	9	90
Со	2a	50	15	150
V	2a	100	30	300
Ni	2a	200	60	600

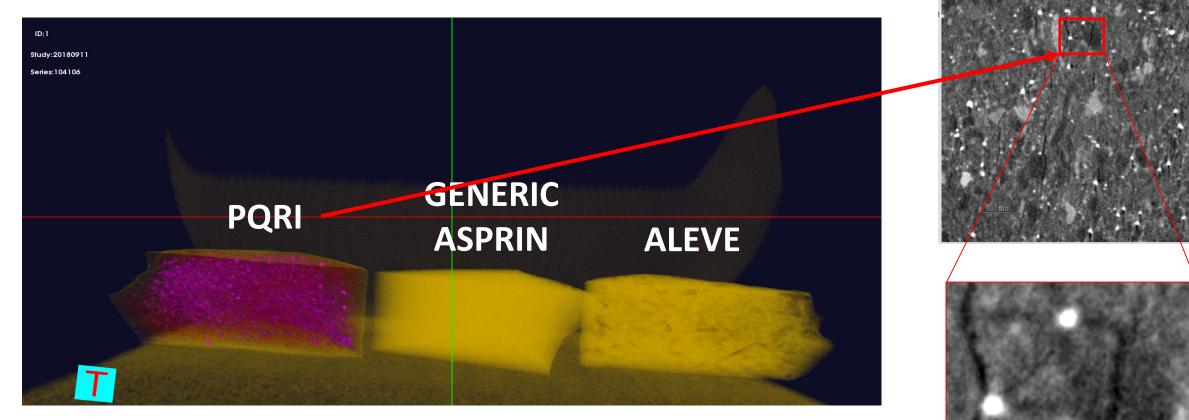
Results - Mercury

Hg--Concentration (ug/g) vs. Instrument and Reference



Mercury Stability Study – Formulation Porosity !!

Hg Stability - 3 Formulations 10% SiO2 100 **Aspirin Formulation** 80 **Aleve Formulation** % Hg Remaining **PQRI** Formulation 20 PQRI Aspirin Aleve 0 0 1000 ²⁰⁰⁰ Time - Minutes³⁰⁰⁰ 4000 5000 6000


Excipients	Formulation 1 (g)
Microcrystalline Cellulose (grams)	0.75
Magnesium Aluminum Silicate	
(grams)	0.25
Lactose (grams)	2.65
Starch (grams)	1
Stearic Acid (grams)	0.05
Red Ferric Oxide (grams)	0.25
Silicon Dioxide (grams)	0.04
Total (grams)	4.99

Mercury Stability Study – Formulation Porosity !!

CT LAB Scan – W Source

High Res Nano3D CT Scan

Mercury Stability Study – Formulation Porosity !!

Study materials (tablets) not stable with respect to Hg levels

SiO₂ input (spiked with Hg) stable as bulk in closed bottle

SiO₂ input unstable when exposed open and diluted in loose medium

SiO₂ input unstable when prepared in low concentration and in porous medium

Preparing materials with binders that reduce porosity can stabilize Hg

Questions

Thanks for the opportunity to participate, discuss XRF, and share our passion!

Thanks for the opportunity to participate, discuss XRF, and share our passion!

