PQRI Workshop: Managing Excipient and API Impact on Continuous Manufacturing May 17 – 18, 2022

The Need for Novel, Coprocessed or Modified Excipients Designed for Purpose in CM Processes

Krizia M. Karry, PhD Global Technical Marketing BASF Pharma Solutions

Agenda

BASF Pharma Solutions

Agenda

Thirty-seven industry practitioners were interviewed.

The survey included drug manufacturers, equipment vendors and excipient suppliers.

Direct compression, twin screw granulation and roller compaction are the preferred technologies for CM.

• Out of different technologies such as dry roller compaction, dry blending, multi layer coating, spray drying, twin screw granulation and direct compression, 32 respondents (86%) out of 37 respondents have suggested to use direct compression for continuous manufacturing.

Source (s): Primary interviews with Vertex (US), Eli Lilly (US), Janssen (BE), CONTINUUS Pharma (US), etc., secondary sources such as company websites and

The most important excipient types were aligned with the formulation needs for the preferred technologies.

Viscosity imparting agents (Agar, Acacia, Bentonite Guargum pectin, etc Diluents fillers (Dextrose Lactose, Starch, Calcium phosphat etc.) Air displacem agents (Nitrogen carbon dioxide etc	 Binders (Gelatin, Dextrin, Agar, Guar gum, Algin acid, Molasses etc.) Surfactants (Sodium lauryl sulphate, Tween 80, Lecithin, span etc.) Granulating agents (water, sucrose, starch, tragacanth, copolyvidone otra otra otra) (water) sucrose, starch, tragacanth, copolyvidone otra) (water) sucrose, starch, tragacanth, copolyvidone otra) (water) sucrose starch, tragacanth, copolyvidone otra) (water) (water) sucrose, starch, tragacanth, copolyvidone (water) (wate	Solvents (Water, oils, chlordiazepo xide hydochloride, glycerol, ethanol etc.) Dis- integrants (cellulose, clays, starch, Alginate, polyvinylpyrr olidone etc.) Buffering agents (Carbonate, citrates, lactates, tartrates, phosphates etc.)	Chelating agents (Disodium edetate, EDTA, EDTAH4, etc.) Anti- adherents (Magnesium stearate, talc, starch, cellulose etc.) Lubricants (Stearic acid, Talk, polyethylene glycol, surfactants etc.)	Co-solvents (propylene glycol, ethanol, PEG, glycerol etc.) Gildants (silicates, starch, talcum, colloidal silica calcium phosphate etc.) Super dis- intergrants (Alginic acid, Primogel, Solutab, Emcosoy etc.)	Sweeteners (Sucrose, lactose, sorbitol, saccarine, mannitol etc.) Antioxidants (Hydroquinon e, catechol, gallic acid, casein, thymol etc.) Preservatives (Sorbic acid, Boric acid, alcohol, phenol, Butylparaben etc.)	Humectants (Calcium chloride, mannitol, sorbitol, glycerin, glucose etc.) Flav ouring agents (Clove oil, citric acid, syrup, gypsum, rose oil, orange oil etc.) Coloring agents (Titanium dioxide, indigo carmine, saffron, caramel etc.)	Opacifiers (Talc, calcium sulfate, titanium dioxide, aluminum silicate etc.) Coatings (Camauba wax, cellulose acetate, starch, sucrose, zein etc.) Wetting agent (polysorbats, sorbitan esters, sodium lauryl sulphate	Sorbents (peat moss, nylon, polyethylene, sawdust, feathersetc. Others (Antifoaming agent, Ointment base, Plasticizers, acidifying agentsetc.)
---	--	---	--	--	--	---	--	---

Important excipient types

Other excipients

- **A**

Q_n

Excipient types are similar for both batch and CM, the only difference lies in selection of the physical properties and grades of the excipients, when they are to be used for CM

Source (s): Primary interviews with Vertex (US), Eli Lilly (US), Janssen (BE), CONTINUUS Pharma (US), etc., secondary sources such as company websites and

No excipient met the Top 3 criteria for Flowability, Compressibility & Compactability.

Excipients preferred for both batch and continuous process	Maj or properties preferred for continuous manufacturing of drugs (highlighted in green colour)							
	Flowability	Compressibility	Compactibility	Mixing potential	Binding ability	Quick disintegration	Stability	Anti-adhesion
мсс								
Lactose								
Silica								
Starch								
Sorbitol								
Mannitol								
PVP								
Magnesium stearate								
Calcium carbonate								
Calcium phosphate								

O,

Note:

indicates major properties of the excipients preferred for continuous manufacturing of drugs.

indicates properties that have negligible / no importance for excipients preferred for continuous manufacturing of drugs.

Excipient types are similar for batch and continuous – the selection process is not

We set out to create a novel excipient that met the Top 3 criteria for flowability, compressibility and compactability.

There are five excipient types in a typical IR tablet.

Diluents, binders and disintegrants are the most common types for both batch and CM.

We defined a Quality Target Product Profile (QTPP) to drive R&D activities and meet the needs of CM formulators.

	Parameter	Values	Method	
hemical	Particle size (distribution)	>6.0	ZoomLab™	
	Powder density	>6.0	ZoomLab™	
sicoc	Powder flow	>6.0	ZoomLab™	
Phy	Flowability	≤32° (excellent)	Angle of repose	(Ph.Eur. 2.9.36)
	Tablettability	>6.0	ZoomLab™	
	Compression pressure	~180 MPa [max. 300 MPa]	USP 1062	
Ice	(Ejected) solid fraction	~0.85 [range 0.80 to 0.90]	USP 1062	
man	Ejection force [stress]	<200 N [<3.0 MPa]	USP 1062	
rfor	Tablet strength (tensile strength)	>2.0 MPa [min. >1.7 MPa]	USP 1062	
Pei	Friability of tablets	<1.0%	Friability	(Ph.Eur. 2.9.7)
	Disintegration time	1 to 5 (15) minutes	Disintegration	(Ph.Eur. 2.9.1)
	Dissolution	>85% in 15 minutes	Dissolution	(Ph.Eur. 2.9.3)

Source: T. Cech, European Pharma Application Lab, Pharma Solutions, BASF SE, Ludwigshafen, Germany

11

A

Q.

Agenda

1	Survey: CM Technologies and Excipients
2	Coprocessed Excipients Versus Individual Blends Performance in CM
3	Summary

What are Coprocessed Excipients?

Coprocessed excipients are composed of different functional ingredients combined into a single product

Aiming to:

- Enhance functional material properties
- Optimize performance
- Overcome API's blending and processing challenges.

14

Resulting in:

Cost savings

- Faster drug development, and
- Reduced time-to-market

Coprocessed excipients allow for a simpler feeding process & control strategy.

We created Kollitab[™] DC 87 L as an *all-in-one* tableting solution for batch and CM processes.

O.

Filler: Lactose monohydrate MDE*: 4384 mg for Tablets (Ph.Eur., USP/NF, JP**), (~87%) Disintegrant: Crospovidone MDE*: 1680 mg for Tablets

(Ph.Eur., USP/NF, JP), (~9%)

Binder: PVA-PEG copolymer (Kollicoat[®] IR)

MDE*: 76 mg for Tablets (Ph.Eur., USP/NF, JPE), (~3%)

Lubricant: Sodium stearyl fumarate, SSF

MDE*: 85 mg for Tablets (Ph.Eur., USP/NF, JPE), (~1%)

*MDE: Maximum Daily Exposition – IID List **Lactose hydrate

Composition

We optimized Kollitab's composition to have optimal Flowability, Compressibility and Compactability (measured in tablets).

		h:I	124.5	
	a	ЫI	ιιιν	

Bulk [g cm⁻³]	0.56
Tapped [g cm⁻³]	0.61
Hausner Ratio	1.09 (Excellent
Angle of Repose [°]	27 (Excellent
Compressibility Index [%]	8 (Excellent
Particle size (Ma	lvern):


```
d<sub>90</sub> [μm] 275
```


Coprocessed excipient flowability was significantly better than a comparable blend of its individual components.

- A. KollitabTM DC 87 L (6 mm nozzle)
- B. KollitabTM DC 87 L + 10% vardenafil HCl (6 mm nozzle)
- C. Lactose blend* (10 mm nozzle)
- D. Lactose blend* + 10% vardenafil HCl (25 mm nozzle)

*Lactose Blend: 87% Lactose, spray dried 9% crospovidone (Kollidon[®] CL F), 3% copovidone (Kollidon[®] VA 64) 1% SSF

We optimized Kollitab's composition to have optimal Flowability, Compressibility and Compactability (measured in tablets).

Flowability	
Bulk [g cm⁻³]	0.56
Tapped [g cm⁻³]	0.61
Hausner Ratio	1.09 (Excellent)
Angle of Repose [°]	27 (Excellent)
Compressibility Index [%]	8 (Excellent)
Particle size (Mal d ₁₀ [μm] 76 d ₅₀ [μm] 158 d ₉₀ [μm] 275	lvern): 3 5

Compressibility

Material @ 15.0 kPa in FT4	Compressibility (%)	Bulk (g/mL)	Cohesion (kPa)
Kollitab™ DC 87 L	4	0.56	0.21
Lactose Blend*	10	0.53	0.46
(API) Vardenafil HCI	26	0.42	1.46
90% Kollitab™ DC 87 L+ 10% vardenafil HCl	6	0.58	0.22
90% Lactose Blend* + 10% vardenafil HCl	11	0.54	0.47

BASF

* Individual Excipients / Lactose Blend: 87% Lactose, spray dried 9% crospovidone (Kollidon® CL-F, 3% copovidone (Kollidon® VA 64) 1% Sodium Stearyl Fumarate

Compressibility is a measure of the % change in volume to an applied normal force.

- Affected by moisture content, temperature, particle size and cohesivity.
- During feeding and refills, head pressure will compress powder on the screws and changes in feed factor / PERT and variability can be seen.

The relationship between compression pressure, tensile strength and (ejected) solid fraction is critical to understanding the tabletting process.

Source: Evaluation of the effects of tableting speed on the relationship between compaction pressure, tensile strength, and ... C. K. Tye, C. Sun, G. E. Amidon; J. Pharm. Sci. Vol 94, No 3, March 2005, pp 465 – 472

Kollitab showed optimal compressibility and compactability, which led to stronger tablets at lower compression forces.

Tensile strength:			
Compression pressure:			
Ejected solid fraction:			

1.7 MPa min. required for tablet handling
2.0 MPa min. required for film-coating
180 MPa generally accepted as low
300 MPa max generally accepted
0.8 to 0.9 targeted value to avoid over-compression

We create chemist

Compressibility and process robustness with the coprocessed blend was higher vs. the individual blend.

Manufacturability Profile

Vardenafil HCI: 10% Kollitab[™] DC 87 L: 90% or Lactose Blend: 90% Punch: 9.0 mm Tablet mass: 250 mg

(Lactose Blend: 87% Lactose spray dried, 9% crospovidone (Kollidon^ CLF) , 3% copovidone (Kollidon $^{\rm R}$ VA 64) and 1% SSF

- Manufacturability profile does not include Ejection Force or (ejected) solid fraction.
- Lubricant distribution will affect this parameter. It needs to be considered!
- This was <u>not</u> identified as a key property in materials or blends.

22

Individual excipient blend led to tablet defects at low and high compression forces. Lubricant distribution was key.

Lactose Blend + 10% vardenafil: Breakage at 7-10 kN

- Lactose blend led to delamination and punch sticking.
- Coprocessed blend allowed for DC of fine cohesive vardenafil

Agenda

1	Survey: CM Technologies and Excipients
2	Coprocessed Excipients Versus Individual Blends Performance in CM
3	Summary

We can control excipient selection but we can't easily control API

- 50% fine APAP
- Direct compression is not possible
 Dry granulation (roller compaction) is not possible
 Wet granulation (fluid-bed or high-shear granulation) is possible

- 50% Ibuprofen 70
- Direct compression may be possible
 Dry granulation (roller compaction) may be possible
 Wet granulation (fluid-bed or high-shear granulation) is possible

ğ

.....

Q,

Continuous manufacturing of fine APAP at 1% with an all-in-one coprocessed led to high drug uniformity

O,

Wt%	Throughput	Blender	Screw configuration	
APAP	(kg/hr)	Speed (RPM)		
1	25	400	Low Shear	

Tablet	APAP %
No.	
1	1.07
2	1.05
3	1.08
4	1.06
5	1.06
6	1.04
7	1.06
8	1.06
9	1.04
10	1.06
Avg	1.06
STDev	0.012
% RSD	1.16

ģ

A

🗖 🗖 BASE

We create chemistry

BASF Pharma Solutions

Kollitab[™] DC 87 L and APAP - Feeding Properties

BASF Pharma Solutions

The impact of shear cannot be negated on CM blends as it impacts content uniformity. Should it be included in the Top Criteria?

Tablet	APAP 30% Low Shear	APAP 30% High Shear
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
Average		
STDev	1.21	0.18
% RSD	4.6	0.7

High shear

Mav 18.

2022

Wt%	Throughput	Blender	Screw configuration
APAP	(kg/hr)	Speed (RPM)	
10 / 30	10	300	Low Shear

Wt%	Throughput	Blender	Screw configuration
APAP	(kg/hr)	Speed (RPM)	
10 / 30	10	275	High Shear

Q.

We innovated and accomplished: Kollitab[™] DC 87 L Your new *all-in-one* tableting solution

- High process consistency
- Reduced weight variability

High Hardness Tablet at low compression force

- Minimize tablet defects
- Improve process robustness
- Reduce machines stress and punch damage

Fast Disintegration time

Minimize impact on drug dissolution

Agenda

1	Survey: CM Technologies and Excipients
2	Coprocessed Excipients Versus Individual Blends Performance in CM
3	Summary

- Direct compression, twin screw granulation and dry granulation are the preferred CM processes
- No excipient has all the desired criteria
 - Consider fit-for purpose novel coprocessed excipients
- Designing robust formulations require a systematic understanding of the effect of material attributes on process dynamics and tablettability.
- All-in-one coprocessed excipients can improve feeding and blending processing due its low compressibility and cohesion, as well as, streamline feeder configuration.
- Kollitab[™] DC 87 L provides high flowability, compressibility and fast tablet disintegration. Consider involving us in your next trial!

Q,

We create chemistry

Krizia M. Karry, Ph.D. Krizia.Karry@basf.com