PQRI Workshop: TiO2 Use in Pharmaceuticals Global Regulatory and Technical Challenges June 13-14, 2023

Impact of Film Coating Change on Product Quality

Analytical Tests, Specifications and Formulation Bridging

Andreas Abend Merck & Co., Inc.

Outline

- Impacted Quality Attributes (Tablets)
- Analytical Methods/Specifications
- Level of Change and Potential Impact on Product Performance
 - Innovator Company Perspective
- Formulation Bridging (new drugs)
 - Biopharm
 - Stability data set
- Remaining quuestions

Why is TiO₂ in film coat ?

- Appearance \rightarrow patient compliance/ differentiation
- Protection from light \rightarrow Appearance and impurities

Removal of TiO₂ and Drug Product Quality/Specifications: Solid Oral Dosage Forms

Test*	Acceptance Criteria	Potential Risk Release Shelf life*		
Assay	90-110 % LC	Very Low	(Very) Low	
Content Uniformity	Per Compendia	Very Low	NA	
Appearance	As per approved product**	Low	Medium	
Impurities	ICH Q3B(R2)	Low	Low/Medium	
Dissolution	As per approved product**	Low/Medium	Medium/?	
Moisture	As per approved product**	Low/Medium	Medium?	
Microbial Enumeration Test	Per Compendia	Low	Low/Medium	

Commercial product: Risk of failing one or more Product Specs at the end of shelf-life

- Other elements of QTPP may be impacted (e.g., taste/acceptability)
- ** May change in case approved product spec can't be met
- For products premarket approval requires up-dates in IND/IMPD

Impact on (existing) Analytical methods

- Early clinical development phase:
 - Impact Low -> methods are fit-for purpose and phase appropriately validated
 - No rework beyond typical development efforts
- Late-stage clinical development:
 - Impact Medium/High:
 - Methods usually "locked" data consistency for CTM and registration stability
 - All elements of method validation need to be repeated
 - Methods transfers to manufacturing sites/ release and stability testing to be repeated
 - Methods and data need to be bridged if FSS already started
 - Low risk for appearance, assay, deg. but could be challenge for dissolution
 - May repeat all or part of FSS
- Commercial Products:
 - Impact high:
 - In addition to revalidation (demonstration of equivalency), and methods transfer – including to countries requiring TOI, all changes must be filed in markets where products are approved
 - Magnitude depends on product portfolio (type of product, total number of products impacted) → available resources!

Analytical resources (internal, external) unlikely to meet demand

Drug product Stability Mitigation Strategy

- Long-term Stability of TF-coated solid oral dosage forms and TF-capsules with similar attributes compared to TiO₂ is sparse
 - Increased risk of Out-of-Trend and Out-of-Specification
 - Increased Quality oversight/ communications with agencies
- Potential Change to product with inferior stability may be effectively mitigated by:
 - changing storage conditions (store below 30°C, vs. store at controlled RT, protect from light, use immediately, etc.)
 - Tightly controlled shipping conditions
 - Changing the Packaging
 - Shorten shelf-life (supply chain issues)
 - Additional reformulation (ideally below SUPAC Level 3 and equivalent reg. guidance)
 - Change in Specifications

Increased filing/ review/approval process: $AR \rightarrow PAS \rightarrow sNDA$

Changes during Product Development – example bridging scenario

Film coating changes and impact on development timelines

- Products not at pivotal* clinical study stage:
 - \rightarrow low/medium impact
 - Purposeful Changes are typically supported by *in vitro* and if needed *in vivo* data
 - Follow existing rBA/BE guidances in major markets
 - Adherence to strict BE criteria in some markets
- Products in pivotal clinical trials:
 - CTM in Phase 3 close to final formulation/ process
 - Uses the "to-be-commercial" manufacturing process (incl. composition)
 - Manufacturing Changes require demonstration of lack of in vivo impact
 - In addition to stability
 - Potentially considerable rework needed
 - Dependent of overall product filing strategy

* Phase 3/ JP: Phase 2b

New product filing options

- One global market image Titanium Dioxide Free (TF)
 - Benefit: lean manufacturing, product registration, and supply strategy
- Several (regional) market images TiO₂ and TF
 - Benefit: only regional requirements need to be met
 - Draw-back: essentially doubles late-stage CMC development efforts:
 - Process scale-up (film coating only- if only change)
 - Multiple Formal (or bridging) stability studies
 - Complex (non-harmonized) in vitro bridging requirements
 - May lead to BE studies (or separate clinical trials \rightarrow even more complex!)
 - Managing products with different Quality attributes

May question ethical standards (industry and health authorities)

Options for Changing to TiO₂ free Tablets

Late clinical development and commercial product

* Assumes "no change" in process, no change in other specifications

Regulatory Requirements (in select regions)

Region	Remove FC	Remove TiO2	Remove and Replace	Comments
EU	Type 1A/1b: compara	No approved QC specs		
US	Level 1 change; meet QC specifications Level 3 change			No QC spec.
Japan	For Adult products: Le dissolution testing)	Pediatric products- if offered -may be Level C/D: BE		
Korea	Changes may require	No QC spec.		
China	May require BE	May be considered minor/ disso testing		No QC spec.

IR products: Assumes no other changes

Biopharmaceutics Classification System: Unlikely recognized at this stage – so can't be leveraged

Disharmonized Dissolution Similarity Acceptance Criteria major Risk for industry \rightarrow BE studies

SUPAC IR - Interpretation of Reg. requirements:

- SUPAC IR:
- Changes would likely be > level 2 component/composition change
 - Provisions exists to allow removal/ replacement of colorant (FC)
 - Pigments/ dyes are ~ 10% weight of typical film coating systems
 - Level 1 change, file in AR for marketed products
- Changes here may be in excess of 2% total tablet weight (i.e., not small removal of a "pigment")
 - Minitablets: TiO₂ (~ 5% total weight) to CaCO₃ (more than 5% total weight)
 - "Non-functional" FC still affords taste masking
 - Plain removal Still Level 1 change?
 - How to apply guidance in development?

In vitro bridging efforts within SUPAC-IR*

SUPAC MR - Interpretation of Reg. requirements:

- No "SUPAC IR Q&A" suggesting flexibility re-"minor" change
- MR is a complex product "group":
 - DR: enteric coated product FC removal not an option
 - ER: FC maybe release controlling or not
- Changes would likely be > level 2 component/composition change
 - IVIVC may be available for some ER products (less likely for DR)
- Products in development have no approved QC method
 - So same dilemma as for IR: does one rely on more extensive disso testing?

In vitro (biopharm) bridging risks

- Failure to meet Disso spec (if one is approved):
 - IR :
 - BCS 4 will require BE
 - BCS 1-3: follow Level 2 change
 - MR:
 - Regulatory Flexibility uncertain/unknown \rightarrow BE likely (or apply IVIVC)
- For Products in development: a regulatory approved QC specification doesn't exist
 - IR \rightarrow multi-media dissolution even for minor changes
 - MR → most likely BE (or use IVIVC if successfully conducted and reg. approved)

Other solid Oral Dosage Forms

- Pediatrics: Taste/ smell/ color
 - Suspendability, in-use compatibility with (approved)soft foods
- ODT: disintegration Time may be impacted FC weight increase, change in FC materials attributes...

Where does this lead to once a ban is in effect?

- Products Pre- Phase 3: most likely change to TiO₂ free (TF)
- In Phase 3, but before FSS: change to TF but continue clinical trials with TiO₂
 - Likely no impact on analytical specs (no change during long-term stab. studies)
 - Appearance specification of FMF still adjustable
 - Need to bridge bioperformance (in vitro or in vivo)
 - Final Methods validation may/ may not require substantial rework
- Phase 3/ FSS already under way:
 - Analytical specs to be up-dated
 - Not final image additional registration stability data ("2 X FSS")
 - New Packaging materials may also need to e identified...
 - Rework of analytical methods may require additional work
 - Formulation bridging
- Filed products:
 - Potentially all methods need to be revalidated and transferred to test labs (including those that do test on importation)

Summary

- Manufacturing changes should lead to superior product quality not inferior
 - If TiO₂ is "unsafe" it shall be addressed
- A ban will likely not be limited to just removal/ replacement of TiO_2
- In addition to new film coating process development all analytical methods are impacted
 - Major disruption in QC Testing labs
 including government owned/operated labs
- Biopharm risk assessment/ mitigation without globally aligned requirements will inevitably lead to many unnecessary BE studies
- Regulatory filing (applicant) and filing review (agency) burden

Acknowledgements

- PQRI
- Merck colleagues: Diana Watkins, Satyam Upadrashta, Shailesh Singh, David Harris, Mark Eickhoff